
LSU EE 4720 Homework 2 Solution Due: 21 February 2025
Formatted 16:20, 6 March 2025

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find a
solution. It is each student’s duty to him or herself to resolve frustrations and roadblocks quickly,
hopefully helped along by the satisfaction of making progress. There are plenty of old problems
and solutions to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

Resources
For examples of pipeline execution diagrams of given code fragments running on given MIPS im-
plementations see past midterm exams (and final exams, but mostly midterms). The solutions to
almost all past midterms in this course are available. A good place to start would be 2023 Midterm
Exam Problem 2, 3, 4, and 5.

Problem 1: Solve this problem after Problem 2. It appears before Problem 2 so that you don’t
somehow forget it. Complete the first two parts 2024 Final Exam Problem 1, which asks for pipeline
execution diagrams of MIPS implementations. Solve the parts on page 2 and 3. Do not solve the
floating-point question on page 4.

See the posted final exam solution.

There is another problem are on the next page.

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2024/fe_sol.pdf

Problem 2: Note: The following problem was assigned in all but one of the last eight years, and
its solution is available. DO NOT look at the solution unless you are lost and can’t get help else-
where. Even in that case just glimpse. Appearing below are incorrect executions on the illustrated
implementation. For each one explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until

the lw reaches WB.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

(b) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because the lw writes r1, it does not read r1.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

2

(c) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

(d) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct.

But, the stall starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1,

or for that matter that it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

3

	Problem 1
	Problem 2
	Part a
	Part b
	Part c
	Part d

