Computer Architecture
 LSU EE 4720

 Midterm Examination

 Midterm Examination}

Wednesday, 3 April 2024 9:30-10:20 CDT

Problem 1 \qquad (18 pts)

Problem 2 \qquad (17 pts)

Problem 3 (15 pts)
Problem 4 \qquad
Problem 5 \qquad (20 pts)

Problem 6 \qquad (15 pts)

Alias \qquad Exam Tota \qquad (100 pts)

Problem 1: [18 pts] Appearing below is a changed version of the MIPS implementation appearing in Homework 3 and the 2020 midterm exam.

In the table show the select signal values expected for the execution shown below. \square Use X for select signals that don't matter (that can be either 0 or 1).Don't forget to check for dependencies

```
# Cycle 0
add r1, r2, r3 IF
ori r7, r1, 9 IF
sub r8, r9, r7 IF
Sw r7, 5(r6)
# Cycle 
```

A

B

\# Cycle	0	1	2	3	4	5	6	7

C

D

\# Cycle	0	1	2	3	4	5	6	7

Problem 2: [17 pts] Appearing below is the implementation from the previous problem. It is not identical to the Homework 3 implementation. See the last page of this exam for the Homework 3 Problem 3 solution.Design the control logic for the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D select signals.Take advantage of existing logic, not much more logic is needed. \square Make sure that C works for the code fragment in the previous part.Don't forget that execution is pipelined.

Problem 3: [15 pts] Show the execution of the MIPS code fragments on the implementation.

Show the execution of the fragment below with \squarethe branch taken \square Pay close attention to branch behavior.

```
beq r1, r1, SKIPA
add r2, r3, r4
sub r5, r6, r7
ori r8, r9, 100
xori r10, r11, 101
```

SKIPA:
lw r12, O(r14)Show the execution of the fragment below. \qquad Be sure to check for dependencies.

```
addi r5, r5, 4
lw r2, O(r5)
add r1, r2, r3
sub r4, r1, r4
```

Problem 4: [15 pts] Appearing below is the implementation of Another RISC ISA (ARI) and incomplete diagrams for the encoding of its MIPS-like R and I formats.
How many registers does ARI have?What is ARI's immediate size?Why is it possible to implement an instruction like lw r1, 4(r2) but not an instruction like sw r1, 4(r2) on the implementation above?In the spaces below complete \square ARI R and \square ARI I instruction formats consistent with the implementation.Be sure to show the opcode field and any opcode extensions that are needed.

Problem 5: [20 pts] Answer each question below.
(a) Show the contents of the destination register after each MIPS I instruction below executes.

```
# Initially r1 = 0x12345678
sll r2, r1, 16
```



```
srl r3, r1, 16
#
```

```
    r3 =
or r4, r2, r3
#
```

```\(r 4=\)
```

(b) Given the MIPS code below, why might execution never reach the or instruction?

```
lw $a0, O($t0)
jal SOME_CONVENTIONAL_STANDARD_LIBRARY_FUNCTION
addi r31, r31, -8
or $s1, $s1, $v0
```

The or instruction won't be reached because:What will happen instead is:
(c) Register r 9 holds the address of the middle of a large memory allocation, and so all the MIPS lb instructions below execute with no problem. Not so for the 1 w instructions.

```
lb r11, O(r9) # Will execute correctly.
lb r12, 5(r9) # Will execute correctly.
lb r13, 10(r9) # Will execute correctly.
lb r14, 15(r9) # Will execute correctly.
lw r1, O(r9)
lw r2, 5(r9)
lw r3, 10(r9)
lw r4, 15(r9)
```

Why won't the rest of the MIPS code execute to completion?
What are the maximum and minimum number of 1 w instructions that will execute before an error occurs, andbriefly explain how the maximum and minimum number are determined by the exact value of $r 9$.
(d) Simplify MIPS the code fragment below.

```
lbu r1, 0(r10)
lbu r2, 1(r10)
sll r1, r1, 8
or r1, r1, r2
sh r1, 2(r10)
# Note: r1 and r2 not used again.
```

Simplify the code fragment \square without changing what it does.

Problem 6：［15 pts］Answer each question below．
（a）In class we described three families of ISAs，CISC，VLIW，and RISC．
How do VLIW ISAs differ from both RISC and CISC ISAs？
（b）Identify the ISA family of the following ISAs：
MIPS：\bigcirc CISC $\bigcirc V L I W \bigcirc$ RISC
Arm A64：\bigcirc CISC $\bigcirc V L I W \bigcirc$ RISC

Itanium：〇CISC 〇VLIW 〇RISC
Intel 64 ／IA－32：\bigcirc CISC \bigcirc VLIW \bigcirc RISC
vax：〇CISC 〇VLIW \bigcirc RISC
（c）The statement below is wrong．
CISC ISAs can have large immediate values，but at the cost of having large instructions．That is why programs in CISC ISAs are large compared to those in RISC ISAs．What is correct in the statement above？What is wrong in the statement above？

Appearing below is part of the solution to Homework 3 Problem 3. It may be helpful in solving Problem 2 in this exam.

