
LSU EE 4720 Homework 3 Solution Due: 28 March 2024

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of AI LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations
Some of the problems require thought, and students are expected to persevere until they find
a solution. It is the students’ responsibility to resolve frustrations and roadblocks quickly, and
hopefully with the satisfaction of making progress. There are plenty of old problems and solutions
to look at. One way to resolve issues is to ask Dr. Koppelman or others for help.

For the 2020 Final Exam, and other exams and solutions visit
https://www.ece.lsu.edu/ee4720/prev.html.

Problem 1 on the next page.

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/prev.html

Problem 1: Appearing below is the slightly lower cost MIPS implementation from the 2020
midterm exam. In the 2020 exam three EX-stage select signals were labeled, (A-C), here all five
are, (A-E). Below that is an incomplete pipeline execution diagram (it lacks a code fragment) and
a timing diagram showing values on the labeled select signals over time. In 2020 midterm exam
Problem 1(a) these signal values had to be found given a code fragment. For this problem, the
signal values are given. Write a code fragment that could have produced these signals. Feel free to
look at the solution to 2020 Problem 1(a) for help and practice.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

A B C

rt is src

D
E

D

E

�Write a program that could have resulted in these select signal values.

The solution appears below. Registers carrying dependencies are shown in upper case. The last instruction had to

be some kind of a store because the A and B signals, in cycle 5, indicated that a value bypassed from ME was needed, but

because C=1, that value could only be needed for the EX/ME.rtv latch, which is used for the store value.

SOLUTION

Cycle 0 1 2 3 4 5 6 7

addi R1, r2, 3 IF ID EX ME WB

sub r4, R1, r3 IF ID EX ME WB

add R5, R1, R1 IF ID EX ME WB

sw R5, 2(r3) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

A X 0 1 0

B X 1 0 0

C 1 0 0 1

Cycle 0 1 2 3 4 5 6 7

D 1 X X 1

E 0 1 1 0

Cycle 0 1 2 3 4 5 6 7

2

Problem 2: Appearing below is the solution to 2020 Midterm Exam Problem 2, showing control
logic for those slightly lower cost bypass paths, with one unfortunate change. The bottom input

to the 3-input AND gate is supposed to connect to the rt is src logic block. Due to some defect

that input is stuck at 1. (This is known as a stuck-at fault.) This stuck-at fault is shown on the
diagram.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

A B C

rt is src

=' ME By

rt By

WB By

Stall

type R

=' ='

='

ME By
rt By

0
1

0
10

1

rs 25:21

rt 20:16

Stuck At 1
1'b1

Continued on Next Page

3

�Write a code fragment that will not execute as intended on this hardware due to the stuck-at fault.
Note: In the original assignment the phrase “execute correctly” was used instead of “execute as
intended”.

Solution appears below. In the code fragment registers written with upper-case letters were specially chosen to

expose the flaw (by setting up certain dependencies). To understand the solution work out the select signal values (those

labeled A-E) in cycle 3. They should show that Stall is 1 when it should be 0, the problem that the code fragment

is exposing. The ori instruction is the victim in this code fragment, in that its control signals are wrong, including the

erroneous stall.

To expose the flaw three conditions have to be satisfied. These are explained briefly here, and in detail below.

Condition (1): The last instruction had to be a type I instruction that writes a register, ori is chosen here. Condition

(2): The same register number must be used rt register of the last instruction and the destination of the first (of three)

instruction. The first instruction is add and the matching register is r1. When the first two conditions are satisfied the

output of the 3-input AND gate and the rt By signal will be 1 when they should have been 0. Condition (3): There

must be a dependency between the second and third instructions. In the solution that dependence is carried by r4. The

second instruction is sub but any arithmetic or logical instruction will do. As a result of the third condition (combined

with the first two) there will be a stall that would not occur without the stuck-at fault.

Here is a more detailed explanation. The bottom input to the 3-input AND gate is stuck at 1. For something to go

wrong we need a situation in which the bottom input should have been 0. The bottom 3-input AND gate input connects

to rt is src , which is 0 when there is a type-I arithmetic or logical instruction in ID. In the solution below an ori r1,

r4, 7 is chosen, notice that it is in ID in cycle 3. The output of the 3-input AND gate is used to compute the rt By

signal (for the B mux) and to compute the stall signal. To cause execution to differ a code fragment must be found which

will result in Stall being 1 when it should have been 0. For that we need the output of the 3-input AND gate to be 1

(when it should have been 0) and for the upper input to the Stall (green) AND gate to be 1.

To get the output of the 3-input AND gate to be 1, we need a match between the rt register of the ori instruction

(r1) with the destination of the instruction in ME in cycle 3. To get that match an add r1, r2, r3 instruction is

chosen. The ori we have chosen will result in the middle input to the 3-input AND being 0, and so with the ori and

add instructions the 3-input AND gate output will be 1 when it should have been 0.

To get the Stall signal to be 1 when it should have been zero we need to set up conditions for an ME bypass

(legitimately, not due to the fault). As a result of the true ME bypass and the flaw-induced WB By there will be a stall

that would not occur otherwise. To get ME By to be 1 in cycle 3, the destination of the second instruction is chosen to

match the rs source of the ori. A sub r4, r5, r6 achieves this.

SOLUTION

Cycle 0 1 2 3 4 5 6 7

add R1, r2, r3 IF ID EX ME WB

sub R4, r5, r6 IF ID EX ME WB

ori R1, R4, 7 IF ID -> EX ME WB # Unnecessary stall in cycle 3.

As luck would have it this defect has occurred in a computer that’s on Mars. The computer can’t
be fixed, but it is possible to download new software to this computer.

�Can the software be re-written to avoid this stuck-at fault? �Explain.

No problem. Have your compiler people avoid type-I destination registers that match the destination of the instruction

two instructions back (the instruction before the previous one). In the solution to the previous part that would mean the

destination of the ori would need to be changed from r1 to some other free register, say r9. The change from r1 to

r9 would need also to be made in instructions that follow the ori.

4

Problem 3: Appearing below is the slightly lower cost MIPS implementation, including the control
logic from the 2020 Midterm Exam solution. Design the control logic for the select signal labeled E.
Hint: Not much needs to be added if some existing logic is used. The SVG source for the diagram
can be found at https://www.ece.lsu.edu/ee4720/2024/hw03-lite-logic-e.svg.

�Design control logic for select signal E.

Solution appears below in blue, along with a code fragment to help explain the solution. The lower input of the E

mux is used if a bypass is needed from either ME or WB for the rs register. In the example code fragment that bypass is

from ME, from the add to the sub. There is already logic to detect the dependencies between the rs source and the two

preceding instructions. A new OR gate checks whether either dependence is present, producing the new rs Byp signal

which will be used for the E select signal. Of course, rs Byp is computed when the instruction needing the bypass (such

as sub) is in ID, so the signal is put through the ID/EX pipeline latch so that it can be used when the instruction is in

EX.

In the example below, E should be 1 for the sub instruction (due to dependence through rs register) but 0 for the

xor instruction (no dependence through the rs register). For the sub instruction the output of the new OR gate is 1

in cycle 2 (detecting the dependence carried by r1), the bypass is used when the sub is in EX, in cycle 3. For the xor

instruction the output of the new OR gate is 0 in cycle 3 (neither of the last two instructions writes r7, E doesn’t care

about the rt register, r4), the EX.rsv value is used when the xor is in EX, in cycle 4.

Common Errors: Signal E should be 1 only if there is a dependence through the rs register. It is wrong to

set E to 1 if there is a dependence with the rt register but not with the rs register.

Another common error was to connect the control logic directly to the multiplexor select signals. (I will not
show an example of this incorrect connection lest anyone remember the connection but not that its
wrong.) The control logic is computing select signals for the instruction in ID, those select signals will be used one cycle

later when the instruction is in EX, and for that reason they pass through the ID/EX pipeline latch. If those control

signals instead were to connect directly to the multiplexor select signals they would be affecting the previous instruction.

That’s like ordering cheese in one of those assembly-line sandwich shops, and having them put the cheese not on your

sandwich, but the sandwich ordered by the person immediately ahead of you in line.

Cycle 0 1 2 3 4 5 # Example used to explain solution.

add R1, r2, r3 IF ID EX ME WB

sub R4, R1, r5 IF ID EX ME WB # E=1 was computed in cyc 2, used in cyc 3.

xor r6, r7, R4 IF ID EX ME WB # E=0 was computed in cyc 3, used in cyc 4.

E 0 1 0 # Cycle in which E is used.

Cycle 0 1 2 3 4 5

5

https://www.ece.lsu.edu/ee4720/2024/hw03-lite-logic-e.svg

Changes appear below in blue. Explanation is on previous page.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv
IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

A B C

rt is src

=' ME By

rt By

WB By

Stall

type R

=' ='

='

ME By
rt By

0
1

0
10

1

rs 25:21

rt 20:16

E

E

rs By

Solution: check
for an rs
dependence
with either of
the two
preceeding
instructions.

6

	Problem 1
	Problem 2
	Problem 3

