LSU EE 4720 Homework 1 Due: XX X2 14 February 2024

Collaboration Rules

Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of MIPS or assembler syntax, interpreting error messages, how a
part of the problem might be solved, etc.) It is also acceptable to seek out assembly language
resources for help on MIPS, etc. It is okay to make use of Al LLM tools such as ChatGPT and
Copilot to generate sample code. (Do not assume LLM output is correct. Treat LLM output
the same way one might treat legal advice given by a lawyer character in a movie: it may sound
impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Student Expectations

To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for MIPS instructions and the SPIM simulator, and to seek out any ad-
ditional help and resources that might be needed. (Of course this doesn’t mean asking someone else
to solve it for you.) Students are expected to experiment to learn how MIPS instructions work, and
how to code assembly language sequences. Experimentation might be done on old homework assign-
ments or the simple code samples provided in /home/faculty/koppel/pub/ee4720/hw/practice.
Students are also expected to learn what error messages mean by consulting documentation and by
asking others (including Dr. Koppelman), and also to develop debugging skills. It is the students’
responsibility to resolve frustrations and roadblocks quickly. (Just ask for help!)

This assignment cannot be solved by blindly pasting together code fragments found in class
notes or past assignments. Solving the assignment is a multi-step learning processes that takes
effort, but one that also provides the satisfaction of progress and of developing skills and under-
standing.

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hwO1.s and look for the
area labeled “Problem 1”.

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2024/hw01.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/eed720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/eed720/proc.html.

Using LSU version of SPIM

This assignment requires a modified version of the SPIM simulator originally developed by James
Larus. Instructions for using this simulator appear on the course procedures page. When running
SPIM check the LSU version date, there should be a line reading LSU Version Date: 2024-02-04.
Make sure that the date is there and is no earlier than 2 February 2024. (The date will appear
on the console output near the top when run non-graphically, and in the lowermost window pane
when run graphically.)

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/proc.html
https://www.ece.lsu.edu/ee4720/2024/hw01.s.html
https://www.ece.lsu.edu/ee4720/reference.html
https://www.ece.lsu.edu/ee4720/proc.html

Debugging
To facilitate debugging the code can be run so that the simulator emits a trace of executed instruc-
tions, plus an indication of changed register values.

The best way to get a trace is to run the code non-graphically. To do so load the code into an
Emacs buffer in a properly set up account. Press —@ to start the simulator non-graphically.
That should pop up a window showing a simulator banner followed by a prompt:

SPIM Version 6.3.1 1lsu of 9 November 2001, 17:34:35 CST

LSU Version Date: 2024-02-04

Copyright 1990-2000 by James R. Larus (larus@cs.wisc.edu).

A1l Rights Reserved.

See the file README for a full copyright notice.

Includes LSU modifications.

File loaded.
Type "run" to run normally.
Type "step 100" to execute next 100 instructions with tracing.
Type "help" for more help.

To see a trace of instructions enter step followed by the number of instructions, say step 100.
This will execute next 100 instructions but will only trace instructions in the assignment routine
(when running this homework assignment). To illustrate stepping consider the lookup routine from
2023 Homework 1. Suppose that the lookup routine starts with the following code:

lookup:
addi $v0, $0, -1
START_WORD:
addi $t0, $a0, O
addi $vo0, $v0, 1

Then a trace of execution would produce the following;:

(spim) step 100

[0x004000cc] 4080b000 mtcO $0, $22 ; 278: mtcO $0, $22
[0x00400118] 0c100000 jal 00400000 [lookup] ; 299: jal lookup
40
[0x0040011c] 40154800 mfcO $21, $9 ; 300: mfcO $s5, $9
[0x00400000] 2002f£ff addi $2, $0, -1 ; 16: addi $v0, $0, -1
[0x00400004] 20880000 addi $8, $4, 0 ; 18: addi $t0, $a0, O
1001
[0%00400008] 20420001 addi $2, $2, 1 ; 19: addi $v0, $v0, 1

Each line starting with square brackets shows the execution of an instruction. The address of
the instruction is shown inside the square brackets. After the square brackets the instruction is
shown in three different forms. First encoded, shown in hexadecimal. Then a disassembled form
(which is based on the encoded instruction). Finally, after the semicolon the instruction is shown
as it appears in the assembler file. Immediately after the semicolon is a line number.

The lines that start with a # show register values that change. The values are shown both in
hexadecimal and decimal. In the example above the first three instructions are from the testbench,
the fourth instruction shown, at address 0x400000, is the first instruction of lookup.

2

Homework Background

MIPS routine aadd is to add two numbers. This would be trivial if the numbers were 32-bit integers,
but the numbers to add are decimal integers encoded as ASCII strings. Routine aadd is called with
four arguments, in registers a0-a3, and has one return value to be put in v0. Register al and a2
are set to the address of strings. Each string consists of only digits (ASCII 48-58) and a null (zero)
termination. There are no + signs, - signs, no decimal point, and no whitespace. Call the two
strings operand 1 and operand 2. For example, the string for operand 1 might be "4720", and
operand 2 might be "3002". The sum should be string "7722".

Register a0 holds the address of the output buffer, an area of memory where the sum is to
be written. The sum must be a C-style ASCII string, and must be written into the output buffer.
Register vO must be set to the address where the sum is written. The value in vO must be at least
a0 (its value when aadd is called) but less than a0+20. Those who are following this well may
wonder why vO can’t be set to exactly a0 (the start of the output buffer). It can, but to do so
one would need to know how many digits there were in the sum, which won’t be known until the
sum is computed and written to memory in which case the sum would have to be moved so that it
started at the beginning of the output buffer. So to avoid the hassle of moving the sum, just put
the actual starting address in vO.

For your solving convenience the length of the two operands, in characters, are in register a3.
The length of operand 1 is in the upper 16 bits and the length of operand 2 is in the lower 16 bits.
For your further convenience, those two lengths are extracted in the unmodified assignment file.
Here is an abridged version of the start of aadd:

aadd:
Register Usage
#
CALL VALUES
$a0: Address of the output buffer in which to write the result.
$al: Address of operand 1, an ASCII string.
$a2: Address of operand 2, an ASCII string.
$a3: Length of operands:
Operand 1 length: bits 31:16
Operand 2 length: bits 15:0
#
RETURN VALUE
$v0: Address of start of the result. Must be within output buffer.
srl $t8, $a3, 16 # Length of operand 1

andi $t9, $a3, Oxffff # Length of operand 2
Put solution here.

jr $ra
nop

If you're one of those people that understand fully what the code is supposed to do and are
eager to get started, great! For the rest, keep reading.

When the code in hwO1.s is run is starts with a testbench that calls aadd multiple times. The
call arguments start out easy and get more difficult. For example, for the first call 12321 + 0 is to
be computed.

The testbench will print one line for each call, and at the end will print a tally of results. For
example, on a correctly solved assignment:

SPIM Version 6.3.1 1lsu of 9 November 2001, 17:34:35 CST
LSU Version Date: 2024-02-04

[snip]

(spim) run

Num Insn: 65 Correct: 12321 + 0 = 12321
Num Insn: 29 Correct: 1 + 1 =2

Num Insn: 56 Correct: 9007 + 2 = 9009

Num Insn: 57 Correct: 5107 + 8 = 5115

Num Insn: 59 Correct: 3 + 9002 = 9005

Num Insn: 55 Correct: 789 + 67 = 3856

Num Insn: 58 Correct: 67 + 789 = 856

Num Insn: 83 Correct: 999999 + 1 = 1000000

Num Insn: 131 Correct: 765432 + 12345678 = 13111110
Num Insn: 260 Correct: 184737252196092 + 8383352872579977 = 8568090124776069
TOTALS: Correct: 10 Wrong: O

The value labeled Num Insn: is the number of instructions executed by your routine. Less is
better, but for this assignment that’s not a priority. The values above are my first correct solution
without much effort put into tuning.

The operands are chosen so that they start out easier and get harder. In the first set one just
adds zero. In the second set both operands are the same size, just one character, and there is no
carry. There is no carry in the third set either, and the sum is palendromic, so it is correct even if
it’s backward.

The value to the left of the = is the output of aadd if register v0>=a0 and v0<=a0+20, where
a0 is the value of register a0 when aadd first called. Above the value of v0 is fine and the values
are correct.

On an unmodified assignment, where aadd does not modify vO, the output will look like:

(spim) run

Num Insn: 5 Wrong : 12321 + 0 = ** $v0 too low **

Num Insn: 5 Wrong : 1 + 1 = %% $v0 too low *x*

Num Insn: 5 Wrong : 9007 + 2 = x*x $v0 too low *x

Num Insn: 5 Wrong : 5107 + 8 = **x $v0 too low *x

Num Insn: 5 Wrong : 3 + 9002 = x*x $v0 too low *x

Num Insn: 5 Wrong : 789 + 67 = x*x $v0 too low *x

Num Insn: 5 Wrong : 67 + 789 = ** $v0 too low **

Num Insn: 5 Wrong : 999999 + 1 = *x $v0 too low *x*

Num Insn: 5 Wrong : 765432 + 12345678 = *x $v0 too low *x*
Num Insn: 5 Wrong : 184737252196092 + 8383352872579977 = x*x $v0 too low *x*
TOTALS: Correct: 0 Wrong: 10

(spim)

For the output above v0 is out of range (since aadd did not try to set it). If all aadd does is
copy the first operand to the output buffer (the storage at a0) then the testbench output would be:

(spim) run

Num Insn: 36 Correct: 12321 + 0 = 12321
Num Insn: 16 Wrong : 1 +1=1
Num Insn: 31 Wrong : 9007 + 2 = 9007

4

Num Insn: 31 Wrong : 5107 + 8 = 5107

Num Insn: 16 Wrong : 3 + 9002 =3

Num Insn: 26 Wrong : 789 + 67 = 789

Num Insn: 21 Wrong : 67 + 789 = 67

Num Insn: 41 Wrong : 999999 + 1 = 999999

Num Insn: 41 Wrong : 765432 + 12345678 = 765432

Num Insn: 86 Wrong : 184737252196092 + 8383352872579977 = 184737252196092

TOTALS: Correct: 1 Wrong: 9

There are no v0 errors, but the output is only correct when operand 2 is zero. But at least we
know we can copy a string!

Helpful Examples

For your convenience two sample MIPS programs are included in the assignment directory, strlen.s|j
and hex-string.s. The strlen.s contains the string length we did in class. Look at it if you
are rusty. Then look at hex-string.s, which contains a routine that writes an ASCII string cor-
responding to the hexadecimal representation of a value in the call register. Like this assignment,
in hex-string an ASCII string is written. Of course, there are many differences between this as-
signment and hex string. For more examples look in the practice directory and at Homework 1
assignments from earlier semesters.

Problem 1: This problem is optional. It’s here to help people get started. Modify aadd so that
operand 1 is copied to the output buffer. That is, the string at a1l should be copied to the memory
at a0, and vO0 should be set to the starting address of the output buffer (the original value of a0).
If this is solved correctly the first call will be correct (because the second operand is zero).

Problem 2: Complete aadd so that it writes the sum to the output buffer and sets vO to the
starting address of the sum. If Problem 1 has been solved remove, comment out, or jump over the
Problem 1 solution since a correct solution to Problem 2 makes Problem 1 unnecessary.

To solve this problem one must start at the least significant digit of each operand (the end of
the string), and then move backward. To make that easier the length of the operands are provided.
A good way to start is to only add the least significant digits. Then use a loop to iterate toward
the more significant digits. Don’t forget to propagate carries and that the strings can be different
sizes.

Feel free to insert new numbers to add, perhaps as to help debugging. Search for ta-
ble_numbers and insert new sets. Below, 9 + 10 is inserted. The third number is the sum, which
the testbench trusts to be correct.

.data

table_numbers:
.asciiz "9", "10", "19"
.asciiz "12321", "o", "12321"
.asciiz "1", "im, "2"
.asciiz "9007", "2", "9009"
.asciiz "b5107", "8", "5115"

Write clear code and add comments appropriate for an expert MIPS programmer. For example,
don’t explain things that can easily be figured out.
For examples of MIPS program see past Homework 1 assignments in this class.

	Problem 0
	Problem 1
	Problem 2

