
Name Partial Solution Formatted For 2-Sided Printing

Computer Architecture

LSU EE 4720

Final Examination

Thursday, 9 May 2024 17:30-19:30 CDT

Alias Naturally Solved

Problem 1 (20 pts)

Problem 2 (15 pts)

Problem 3 (25 pts)

Problem 4 (12 pts)

Problem 5 (8 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck! Thank you for your effort in EE 4720!

S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

https://www.ece.lsu.edu/ee4720/

Problem 1: (20 pts) Appearing below are MIPS implementations and code fragments. Show execution (a
pipeline execution diagram) of the code on the accompanying implementations.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

� Show execution of the code below on the implementation above. �Check for dependencies.

The solution appears below. The implementation above can bypass to the ALU, which is why lw and sub do not stall. But, it can’t

bypass to the input of the ME-stage memory port, which is why the sw stalls.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

add r6, r7, r8 IF ID EX ME WB

lw r9, 0(r6) IF ID EX ME WB

add r1, r2, r9 IF ID -> EX ME WB

sub r4, r1, r5 IF -> ID EX ME WB

sw r4, 0(r5) IF ID ----> EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

2 S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

� Show execution of the code below on the implementation above �until the second fetch of lw. �Show
when and where instructions are squashed (with an x). �The branch must be taken. �Pay close
attention to branch behavior. �Check for dependencies.

The solution appears below. In the implementation above the branch resolves in ME, so the branch target is fetched when the branch

is in WB, which is cycle 6 in the execution below.

In MIPS the delay-slot instruction (addi r1 below) executes whether or not the branch is taken. Because the branch resolves in ME

two instructions had to be squashed.

SOLUTION

LOOP: # Cycle 0 1 2 3 4 5 6 7

lw r3, 0(r4) IF ID EX ME WB IF

addi r4, r4, 4 IF ID EX ME WB

bne r1, r2, LOOP IF ID EX ME WB

addi r1, r1, r3 IF ID EX ME WB

sw r3, 0(r9) IF IDx

sw r4, 4(r9) IFx

sw r2, 8(r9)

Cycle 0 1 2 3 4 5 6 7

S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

3

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0
1
2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode
dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

Complete the execution of the code below for the implementation above. Check for dependencies,
don’t overlook the first two mul.s instructions.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WF

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f8, f15, f16

add.s f7, f4, f9

lwc1 f11, 0(r1)

add.s f10, f11, f1

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12...

4 S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

This page left mostly blank to provide room for the pipeline execution diagram.

S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

5

Problem 2: (15 pts) Answer the following questions on superscalar MIPS implementations.

(a) The superscalar MIPS implementation below has only four bypass paths, one per ALU multiplexor. The
paths have labels, slot 0 and slot 1 (showing where they originate).

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

Mem
Port

md
0

dst0Dest. reg

Addr
25:21

20:16

rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

alu0

rtv0

rtv1

Addr
25:21

20:16

rsv1

rtv1Addr

Data

Data

A
d
d
r

D
 I
n

dst1

imm0

imm1

64

15:0

alu1
Addr

Mem
Port

md
1

dst0

dst1

Register File

ir0

ir1

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst1

alu1

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic Cloud

slo
t 0

slo
t 1

slo
t 1

sl
o
t

1

sl
o
t

0

slot 1

Complete the code fragment below (by adding registers) so that it uses all four bypass paths in cycle 4.

Cycle 0 1 2 3 4 5 6

add IF ID EX ME WB

sub IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

or IF ID EX ME WB

xor IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

and IF ID EX ME WB

slt IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

6 S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

(b) Show the execution of the code below on the following 4-way superscalar MIPS implementation. As we
have been doing this semester, instruction fetches are not aligned (the address can be any multiple of 4).

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+16

Mem
Port

Addr

Addr

Mem
Port

md
0

dst0Dest. reg

Addr
25:21

20:16
rsv0

rtv0Addr
Data
Data

+
31:2

15:0

alu0

rtv0

rtv3

Addr
25:21

20:16
rsv3

rtv3Addr
Data
Data

A
d
d
r

D
 I
n

dst3

imm0

imm3

1
2

8

15:0

alu3
Addr

Mem
Port

md
3

dst0

dst3

Register File

ir0

ir3

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst3

alu3

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic
Cloud

Show execution on this 4-way superscalar MIPS implementation, with the branch taken. Show
all squashes with an x. Check for dependencies and pay attention to branch behavior.

beq r2, r3 SKIP

addi r1, r1, 8

add r2, r2, r5

SKIP:

sw r2, -4(r1)

addi r1, r1, r5

lw r2, 0(r1)

xori r2, r2, 0xaa

slt r8, r1, r9

S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

7

Problem 3: (25 pts) When the modifications to the MIPS implementation on the facing page are complete
an add.s instruction will not have to stall to avoid a structural hazard with preceding mul.s instructions.
Here an add.s instruction can pass through the same number of stages as a mul.s, so there is no possibility
of a stall due to a structural hazard at WF. In the execution below add.s f14 avoids such structural hazard
stalls by passing through the two extra stages, a5 and a6. But to avoid the necessity of always having to
pass through those two extra stages an add.s can use hop multiplexors to skip ahead to WF early. The add.s

f10 skips over two stages, and add.s f7 skips over one stage.

To keep the problem description from getting too long the following interesting material was not included in
the original final exam. Hopping ahead this way is probably not the best way to deal with structural hazards,
even if the avoided structural hazard stalls justified the cost of the pipeline latches. The reason is that those
two new hop multiplexors could instead be used to implement bypass paths from a5 and a6 into the M1 and
A1 functional units. (See the Fall 2006 final exam.) With such bypasses possible there would no longer be a
need to write back early. Hmmm, this may turn into a Fall 2025 question.

New and important hardware is shown in blue. The hardware generating signals xw, we, and fd is from the
old design and needs to be modified. Hardware for lwc1 has been removed, it is not part of this problem.
When solved correctly code should execute as shown below:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WF

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5 M6 WF

add.s f14, f15, f16 IF ID A1 A2 A3 A4 a5 a6 WF

sub r1, r2, r3 IF ID EX ME WB

add.s f7, f8, f9 IF ID A1 A2 A3 A4 a5 WF

or r4, r5, r6 IF ID EX ME WB

add.s f10, f11, f12 IF ID A1 A2 A3 A4 WF

a4/a5.wa 1 1 1

a5/a6.wa 1 1 0

a6/WF.wa 1 0 0

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

In cycle 11 the add.s f7 uses the lower input of Hop6 to hop from a6 to WF (which is why a6 is not shown).
In cycle 12 add.s f10 uses the upper input of Hop6 to hop from a5 to WF.

Connect logic to the inputs of AND gates W5 and W6 so that the wa (write add) signal will be 0 for an
instruction that hopped out of a stage, preventing a hopping add.s from writing back twice. See sample wa

values in the execution above.

Add select signals to the two hop multiplexors. Little or no logic is required. For partial credit assume
wa is correct.

Modify the design so that fd is correct for mul.s and the hopping add.s instructions.

Modify the xw logic so that it works for hopping add.s instructions and the mul.s.

Modify we so that it is correct for hopping add.s and mul.s instructions.

Remove logic that is no longer needed. That can include logic for xw or we, depending on the solution.

8 S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

The IF stage is not shown to make space.

FP Reg File

fd

WFAddr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A2A1

fd

we

xw

M2

fd

we

uses FP mul

uses FP add
Stall
ID

0 1

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

Decode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dst

dst

decode
dest. reg

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

wa wa wa wa wa wa

M3

fd

we

xw

A4

wa

M4

a5 a6

Hop6

Hop7

W5 W6

S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

9

Problem 4: (12 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different branch
predictor. One system has a bimodal predictor, and the other uses a 3-outcome local history predictor.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: N N T T T N T N N T T T N T N N T T T N T <- Outcome

B2: N T N T N T N T N T N T N T N T N T N T N <- Outcome

What is the accuracy of the bimodal predictor on branch B1? Be sure to base the accuracy on a repeating
pattern.

What is the accuracy of 3-outcome local history predictor on B1 ignoring B2.

What is the accuracy of 3-outcome local history predictor on B1 taking into account B2. Note that the
B2 pattern repeats faster than the B1 pattern.

10 S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

Problem 5: (8 pts) The diagram below is for a two-way set associative cache.
(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

16 B

64

63:12

11:4

63:12

11:8 11:8

11:4

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Cache Capacity, in Bytes (how much data can it cache).

Line Size Indicate Unit!!:

S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

11

The problem on this page is not based on the cache from Part a. The code in the problem belows run on
a cache with a line size of 64 bytes (characters). The code fragment starts with the cache cold (empty);
consider only accesses to the array. Of course, 26 = 64.

(b) Find the hit ratio executing the code below.

int64_t sum = 0;

int64_t *a = 0x2000000; // sizeof(int64_t) == 8

int ILIMIT = 1 << 14; // = 214

for (int i=0; i<ILIMIT; i++) sum += a[i];

What is the hit ratio running the code above? Show formula and briefly justify.

12 S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

Problem 6: (20 pts) Answer each question below.

(a) For each item below provide a code fragment exhibiting the indicated dependency. For your solving
convenience one instruction is already shown.

Complete the code fragment so that it exhibits a true dependence. Circle the register carrying the
dependence.

add r1, r2, r3

Complete the code fragment so that it exhibits an output dependence. Circle the register carrying the
dependence.

add r1, r2, r3

Complete the code fragment so that it exhibits an anti-dependence. Circle the register carrying the
dependence.

add r1, r2, r3

(b) Show the encoding of the instructions below. For the FP instruction infer the encoding from the imple-
mentation diagrams in other problems.

Show encoding. Label fields, and show specific values where possible.

add r1, r2, r3

Show encoding. Label fields, and show specific values where possible.

sw r4, 5(r6)

Show encoding. Label fields, and show specific values where possible.

add.s f1, f2, f3

S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

13

(c) Based on the execution below, why can’t the exception raised by the mul.s instruction be precise? What
can’t the handler do after it returns that could be done if the exception were precise?

mul.s f4, f5, f6 IF ID M1 M2 M3 M4 M5*M6*WF

addi r6, r6, 1 IF ID EX ME WB

Handler:

sw r1, 4(fp) IF ID ..

mul.s exception can’t be precise because:

If the exception were precise the handler could:

(d) Many early RISC ISAs avoided branch instructions that compared registers, such as blt r1, r2, TARG,
(branch less than) because that would lower the clock frequency. Later ISAs have included them. Assume
that the time needed to compute r1 < r2 has not changed.

Explain why newer ISAs can have instructions like blt r1, r2, TARG without slowing the clock frequency,
given that comparison is no faster? In your answer indicate where branches might resolve and how
penalty is avoided.

(e) A design team is trying to decide between including bypass path A or bypass path B. With the target
workload compiled without optimization the implementation with A is faster. With the workload compiled
with optimization the implementation with B is faster.

Which should be used © bypass path A or © bypass path B. Explain.

14 S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

This page intentionally left blank.

S
ta

p
le

T
h
is

S
id

e
S

ta
p
le

T
h
is

S
id

e

15

	Problem 1
	Problem 2
	Part a
	Part b

	Problem 3
	Problem 4
	Part a

	Problem 5
	Part a
	Part b

	Problem 6
	Part a
	Part b
	Part c
	Part d
	Part e

