Name Solution

Computer Architecture

Midterm Examination

Wednesday, 29 March 2023 9:30-10:20 CDT

Problem 1 (17 pts)
Problem 2 (20 pts)
Problem 3 (16 pts)
Problem 4 (16 pts)
Problem 5 (16 pts)
Problem 6 (15 pts)
Alias With < 10" tokens. Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: [17 pts] Candidate MIPS instruction subir r1, 22, r3is to compute r1=22-r3, which can’t
be done with a single existing MIPS instruction. The 22 is taken from instruction bits 15:0, which is the
immediate field of Type-I instructions.

The subir instruction is to be encoded so that it can be executed by the implementation to the right with
the ALU computing X = A — B, the same operation used by existing subtract instructions. Notice that in
the implementation the immediate connects to both ALU inputs.

(a) Show how subir ri1, 22, r3 instruction would be encoded for this hardware.

M Show encoding of subir r1, 22, r3. Be sure to show @(‘che position of the fields and @(‘che field values
for the sample instruction.

@(Be sure that the encoding fits with the illustrated hardware and other MIPS instructions.

The solution appears below. The location of the immediate was given in the problem, bits 15:0. The opcode Of every instruction
in an ISA must be in the same place, Tor MIPS that is bits 31:26. The instruction has two register operands, a source, r3 in the
example, and a destination, rl in the example. Since the ALU will be computing A — B the value of the source register, r3, must
De delivered to the B ALY input. Only the rt value can reach the B input and so the source register must be encoded in the rt
Tleld. 1T the source is put in rt, the destination register number must be put in the rs feld, whieh no other MIPS instruction does.

This encoding is shown Delow, with the destination, r1 in the rs field and the source, r3, in the rt field. The immediate i3 snown
in three difrerent radices, Tull eredit would have been given Tor any one of them, even decimal.

OPQOGQ RS RT Immed
‘ subir r r3 2210 = 1616 = 101102‘
31 26 25 21 20 16 15 0

(b) Some control logic is shown for the implementation.

M Modify the control logic that computes dst so that subir executes correctly. MDO not design control logic
for the ALU multiplexors.

@(The control logic should not break existing instructions.

@(The control logic changes should be consistent with your answer to the previous part.
As described above, the destination TQg'\SUéf for subir must be p\&QQG in the rs feld, som@tmng That no other MIPS instruction
does. So, the \Og\Q that QOmpU’lQS the destination YQ%\ST,QT, dst, must be modified so that dst is set to the rs field when & subir

i5in ID. To do 50 & NTLh input is connected to the mux and that input is set 1o the rs bits, 256:21. Thal ATth input is numbered
111, rather than 1002 to simplify the logje.

29:26

25:0 —2%0
IF ?115,0 ID =l EX ME
— NPC NPC T B ALU
25:21 —]
+1 Addr Data rsv ——H Mem
X 20:16 fAqdr Data revib || AL | Port
—— - Addr
Addr Dn —— D
> PC D HMD
| rev -—in Out
260 15:0|format [|
e immed| 1™
Addr
II\DIIOerT dst dst dst
Data| | » |
Out
rd 15;11

000

[. j Dest is rd.
is Type R 5d0 __|
001

- 5d31 __|
010
No dest (i 0) 20
o dest (use r0).
is Branch 011
rs 25;21
is 111

Isb
;D—JA
_@ Dest is r31. [
Lg
—Qg ’/
m

sb

) Dest is rt.

Problem 2: [20 pts] Show the execution of the code fragments below on their accompanying MIPS

implementations.
IF ID EX ME WB
r_E:i] NPC NPC ALU
+1 2521 Inddr Data}—{rsv Mem
) 2010 faqdr Datal—{rtv | AL | Port
—— [HAddr
Addr Din D Dl mp
> PC rtv f{in Out L
7
260 15;0|format | |
304 42 immed MM :Ei E L
Addr
Mem (" Decode)
dst dst dst |+
Port Data |R | dest. reg)
Out

M Show the execution of the code fragment below on @the implementation above. @Be sure to check for

dependencies.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10
addi rR1, r2, 4 IF ID EX ME WB

1w R3, O(R1) IF ID ----> EX ME WB

sw rl, 4(R3) IF ----> ID ----> EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 10

M Show the execution of the code fragment below on @rthe implementation above. @Be sure to check for

dependencies.

SOLUTION

Cycle 01 2 3 4 5 6 7 8 9 10
addi r1, r2, 4 IF ID EX ME WB

sw R1, 4(r3) IF ID --—-> EX ME WB

1w r3, 0(rl) IF -——-> 1D EX M WB

Cycle 01 2 3 4 5 6 7 8 9 10

The solution appears above. A common mistake was to not realize that register rlin the swinstruction is 2 source register, not
4 destination. Therefore there is no true OQPQDGQT\QQ hetween sw and lw.

Problem 2, continued:

IF ID EX ME WB
NPC NPC —L ALU
+1 2521 Taddr Datal—]rsv] Mem
A 20:16 Iaddr Data|—{ rtv | AL | Port
—— | HAddr
Addr Din D DI mo
> PC rtv f—{in Out TTJ
0 15;0| format — E L
30 2b2 immed IMM Dﬁ
= Z
A A=
N | —
Mem (Decode dst o dst dst |+
Port pata| | o || \ dest. reg)
Out

M Show the execution of the code fragment below on @the implementation above. @Be sure to check for

dependencies.

SOLUTION

Cycle 01 2 3 4 5 6 7 8 9 10
addi r1, r2, 4 IF ID EX ME WB

1w R3, O(R1) IF ID EX ME WB

swW rl, 4(r3) IF ID -> EX ME WB

Cycle 01 2 3 4 5 6 7 8 9 10

M Show the execution of the code fragment below on @(the implementation above. @Be sure to check for
dependencies.

The solutions appear above and below. Note that this implementation has bypass paths to the ALU but lacks bypass paths to the
EX/ME.rtv lateh, and so the sw below must stall until the fresh value of r1 arrives in ID.

SOLUTION

Cycle 01 2 3 4 5 6 7 8 9 10
addi r1, r2, 4 IF ID EX ME WB

sw R1, 4(r3) IF ID -——-> EX ME WB

lw 3, 0(r1) IF ----> ID EX ME WB

Cycle 01 2 3 4 5 6 7 8 9 10

Problem 3: [16 pts] Appearing below is the MIPS implementation with labeled multiplexor select signals
from Homework 3. Following that is an execution diagram along with a row showing select signal values for
the D multiplexor. The first instruction, add, is shown.

D @ [—=F EX ME WB
) 2
ia NPC ALU
2521 I'nddr DataH- rsv - Mem
2020 faqdr Dataf{rtvh | AW | Port
. HAddr
Addr DlIn H— w
7 S D D MD
a]I rtv fF{In Out T
= ALY,
260 15;0(format @ @
IMM }—
30+ 42 immed
msb Isb
Addr
Mem (" Decode)
dst dst dst
Port pata| | o | | | dest. reg)
Out

M Complete the code fragment so that it produces the values shown for D.

SOLUTION

Cycle 0O 1 2 3 4 5 6 7 8
add rR1, r2, r3 IF ID EX ME WB

sub r4, r5, R1 IF ID EX ME WB

xor R6, r7, R8 IF ID EX ME WB

addi r9, ri10, 11 IF ID EX ME WB

or rll, rl12, R6 IF ID EX ME WB
Cycle 0O 1 2 3 4 5 6 7 8
D: 1 0 1 2 3

Problem 4: [16 pts] Rewrite each code fragment below so that it uses fewer instructions.

@ Simplify code fragment.

addi r1, r0O, 123
add ri1, ril, r2

SOLUTION
addi ril, r2, 123

M Simplify code fragment.

lw r1, 0(r2)
addi r2, r2, 4
1w r2, 0(r2)

SOLUTION
1w r1, 0(r2)
1w r2, 4(r2)

M Simplify code fragment.

sub rl, r2, r3
beq rl, rO, TARG
1w r1l, 0(r4d)

SOLUTION
beq r2, r3, TARG
1w r1, 0(r4d)

Problem 5: [16 pts] Appearing below are two identical illustrations of one of our MIPS implementations.
To the right are three executions of a code fragment, only one of which is possible on the implementation.

Identify the execution that is possible. For each of the executions that is not possible modify one of the
illustrations below so that it is. The modification is very simple, just consider the target address. A few well
chosen lines will suffice. No logic gates.

The solution appears to the right and below. The branch target address must appear at the PC mux in IF in the cycle before the
target is in IF. In Execution A the target is in IF in cycle 3, 5o the target address must appear at the PC mux in eycle 2, when
the bne is in EX. Therefore for Execution A the path to the PC mux must be moved from ME to EX, that's shown in blue. Similar
reasoning applies to Execution C.

A: Provide a path for the target address

I F I D from EX to the PC mux in IF. EX M E WB
< \T
:D NPC NPC ALU
+1 2521 [Addr Datal—{rsv Mem
A 20:00 Iagdr Dataf—{ rtv | ALU Port
—— | Addr
Addr Din D D mp
> PC rtv —{in Out 7:7
260 15;0|format | |
304 42 immed MM E o e L
Addr
Mem (" Decode)
Port oat dest. reg dst dst dst+
ata ~—————~
Out
C: Provide a path for the target address
IF ID E X from wa to the PC mux in IF. \ \WB
NPC NPC 1 ME ALU
+1 2521 [Addr Data|—{rsv Mem
A 20:16 Ingdr Dataf—{ rtv | ALU Port
—— | Addr
Addr Din D Dl wo
> PC rtv in Out 1:7
260 15;0|format | |
304 42 immed MM :Ei E E L
Addr
Mem (" Decode)
dst dst dst
Port dest. reg
el o [|

M Is the execution below consistent with the unmodified implementation? O Yes or ® No.

M If not, modify the implementation so that it is and Mlabel your modifications A.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A
bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw rl, 0(rd) IFx

lui r5, 0x1234
ori r5, r5, 0x6789

TARG:
xor r8,r9,r10 IF ID EX ME WB
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A

M Is the execution below consistent with the unmodified implementation? ® Yes or O No.

M If not, modify the implementation so that it is and Mlabel your modifications B.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B
bne rl, r2, TARG IF ID EX ME WB
add r1, r1, r3 IF ID EX ME WB
sw rl, 0(r4d) IF IDx
lui r5, 0x1234 IFx
ori r5, r5, 0x6789
TARG:
xor r8,r9,r10 IF ID EX ME WB
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B

M Is the execution below consistent with the unmodified implementation? O Yes or ® No.

M If not, modify the implementation so that it is and Mlabel your modifications C.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C
bne rl, r2, TARG IF ID EX ME WB
add r1, r1, r3 IF ID EX ME WB
sw rl, 0(rd) IF ID EXx
lui r5, 0x1234 IF IDx
ori rb5, r5, 0x6789 IFx
TARG:
xor r8,r9,r10 IF ID EX ME WB
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C

Problem 6: [15 pts] Answer each question below.
(a) Company A and B both come out with a new computer each year. Company A changes both the ISA

and implementation each year. Company B changes only the implementation each year but uses the same
ISA.
M Which company is following accepted practice?

Company B.

M Which company’s customers are more likely to stay with the company when it is time to upgrade to a new
model? Explain.

company B, because they do not need to re-write their software.

(b) In MIPS nop is a pseudo instruction.

M What is a pseudo instruction?

1t i somo,mmg that can be used as though it were a machine instruetion in gssemmy \&nguage, Qven U\Ough NoO sueh instruction is
defined Dy the ISA or TQQOngQG Dy '\mp\emémmons. Ingtead, an assembler will transiate a pseudo‘msrueﬂon into a machine instruction
(Of it necessary mump\e machine '\T\SUUQU()\'\S) that p@rrorms the OPQYM'\OT\ defined for the psgudo‘msmmon. Pseudoinstructions are
PTO\I'\GQG a8 4 convenience. For QXQmp\Q, in MIPS it is easier 1o 'lpr nop than to WPQ somae other instruction that does noth‘mg, suceh
a8 s11 r0, r0, O.

M Does having too many pseudo instructions make implementations too expensive? MExplain.

No, since they do not affect the hardware. For example, consider g collection of 500 pseudo-instructions including plus1 RS whieh
ig translated 10 addi RS, RS, 1, pseudo-instruction Leftl RS whien is translated 10 s11 RS, RS, 2, ..., and lessl
RT, RS whien is translated to s1ti RT, RS, 1. All of these pseudoinstructions transiate info an existing machine instruction
80 Thair presence does not afect the ISA and therefore the implementation.

10

(¢) The first code fragment below, from code presented in the course, loads element i of an array of integers.
(Here integers are four bytes.) Complete the second code fragment so that it loads element i from an array
of shorts (A short is two bytes.).

C CODE # ASM REGISTER = C VARIABLE NAME

int *a; ... # $s1 = a; $t0 = 1 sizeof (int) = 4 chars.

x = alil;

sll $t5, $t0o, 2 # $t5 -> i * 4; Each element is four characters.
add $t5, $s1, $t5 # $t5 -> &al[i] (Address of ali].)

1w $t1, 0($t5H) # x = alil; $t1 —> ali]

M Complete code below so that it loads a short.

C CODE # ASM REGISTER = C VARIABLE NAME

short *a; ... # $s1 = a; $t0 =1 sizeof (short) = 2 chars.
x = alil;

SOLUTION

sll $t5, $to, 1 # $t5 -> i * 2; Each element is two characters.
add $t5, $s1, $t5 # $t5 -> &al[i] (Address of ali].)

1h $t1, 0($t5) # x = ali]; $t1 -> alil

11

