
Name Solution

Computer Architecture

LSU EE 4720

Midterm Examination

Wednesday, 29 March 2023 9:30-10:20 CDT

Alias With � 1012 tokens.

Problem 1 (17 pts)

Problem 2 (20 pts)

Problem 3 (16 pts)

Problem 4 (16 pts)

Problem 5 (16 pts)

Problem 6 (15 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: [17 pts] Candidate MIPS instruction subir r1, 22, r3 is to compute r1=22-r3, which can’t
be done with a single existing MIPS instruction. The 22 is taken from instruction bits 15:0, which is the
immediate field of Type-I instructions.

The subir instruction is to be encoded so that it can be executed by the implementation to the right with
the ALU computing X = A− B, the same operation used by existing subtract instructions. Notice that in
the implementation the immediate connects to both ALU inputs.

(a) Show how subir r1, 22, r3 instruction would be encoded for this hardware.

� Show encoding of subir r1, 22, r3. Be sure to show �the position of the fields and �the field values
for the sample instruction.

�Be sure that the encoding fits with the illustrated hardware and other MIPS instructions.

The solution appears below. The location of the immediate was given in the problem, bits 15:0. The opcode of every instruction

in an ISA must be in the same place, for MIPS that is bits 31:26. The instruction has two register operands, a source, r3 in the

example, and a destination, r1 in the example. Since the ALU will be computing A−B the value of the source register, r3, must

be delivered to the B ALU input. Only the rt value can reach the B input and so the source register must be encoded in the rt

field. If the source is put in rt, the destination register number must be put in the rs field, which no other MIPS instruction does.

This encoding is shown below, with the destination, r1 in the rs field and the source, r3, in the rt field. The immediate is shown

in three different radices, full credit would have been given for any one of them, even decimal.

Opcode

subir

31 26

RS

r1

25 21

RT

r3

20 16

Immed

2210 = 1616 = 101102

15 0

(b) Some control logic is shown for the implementation.

�Modify the control logic that computes dst so that subir executes correctly. �Do not design control logic
for the ALU multiplexors.

�The control logic should not break existing instructions.

�The control logic changes should be consistent with your answer to the previous part.

As described above, the destination register for subir must be placed in the rs field, something that no other MIPS instruction

does. So, the logic that computes the destination register, dst, must be modified so that dst is set to the rs field when a subir

is in ID. To do so a fifth input is connected to the mux and that input is set to the rs bits, 25:21. That fifth input is numbered

1112 rather than 1002 to simplify the logic.

2

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

is Type R

is Store

is Branch

is J

is JAL

Dest is rd.

No dest (use r0).

Dest is r31.

Dest is rt.

rt 20:16

rd 15:11

5'd0

5'd31

000

011

001

010

lsb

msb

2'b0

msb lsb

=

format
immed

is SUBIR

A

B

X

rs 25:21
111

3

Problem 2: [20 pts] Show the execution of the code fragments below on their accompanying MIPS
implementations.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

� Show the execution of the code fragment below on �the implementation above. �Be sure to check for
dependencies.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10

addi R1, r2, 4 IF ID EX ME WB

lw R3, 0(R1) IF ID ----> EX ME WB

sw r1, 4(R3) IF ----> ID ----> EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10

� Show the execution of the code fragment below on �the implementation above. �Be sure to check for
dependencies.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10

addi R1, r2, 4 IF ID EX ME WB

sw R1, 4(r3) IF ID ----> EX ME WB

lw r3, 0(r1) IF ----> ID EX M WB

Cycle 0 1 2 3 4 5 6 7 8 9 10

The solution appears above. A common mistake was to not realize that register r1 in the sw instruction is a source register, not
a destination. Therefore there is no true dependence between sw and lw.

4

Problem 2, continued:

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

� Show the execution of the code fragment below on �the implementation above. �Be sure to check for
dependencies.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10

addi R1, r2, 4 IF ID EX ME WB

lw R3, 0(R1) IF ID EX ME WB

sw r1, 4(R3) IF ID -> EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10

� Show the execution of the code fragment below on �the implementation above. �Be sure to check for
dependencies.

The solutions appear above and below. Note that this implementation has bypass paths to the ALU but lacks bypass paths to the

EX/ME.rtv latch, and so the sw below must stall until the fresh value of r1 arrives in ID.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10

addi R1, r2, 4 IF ID EX ME WB

sw R1, 4(r3) IF ID ----> EX ME WB

lw r3, 0(r1) IF ----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10

5

Problem 3: [16 pts] Appearing below is the MIPS implementation with labeled multiplexor select signals
from Homework 3. Following that is an execution diagram along with a row showing select signal values for
the D multiplexor. The first instruction, add, is shown.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

E
D

C

0

B

1

A

0 1

F

�Complete the code fragment so that it produces the values shown for D.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8

add R1, r2, r3 IF ID EX ME WB

sub r4, r5, R1 IF ID EX ME WB

xor R6, r7, R8 IF ID EX ME WB

addi r9, r10, 11 IF ID EX ME WB

or r11, r12, R6 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8

D: 1 0 1 2 3

6

Problem 4: [16 pts] Rewrite each code fragment below so that it uses fewer instructions.

� Simplify code fragment.

addi r1, r0, 123

add r1, r1, r2

SOLUTION

addi r1, r2, 123

� Simplify code fragment.

lw r1, 0(r2)

addi r2, r2, 4

lw r2, 0(r2)

SOLUTION

lw r1, 0(r2)

lw r2, 4(r2)

� Simplify code fragment.

sub r1, r2, r3

beq r1, r0, TARG

lw r1, 0(r4)

SOLUTION

beq r2, r3, TARG

lw r1, 0(r4)

7

Problem 5: [16 pts] Appearing below are two identical illustrations of one of our MIPS implementations.
To the right are three executions of a code fragment, only one of which is possible on the implementation.

Identify the execution that is possible. For each of the executions that is not possible modify one of the
illustrations below so that it is. The modification is very simple, just consider the target address. A few well
chosen lines will suffice. No logic gates.

The solution appears to the right and below. The branch target address must appear at the PC mux in IF in the cycle before the

target is in IF. In Execution A the target is in IF in cycle 3, so the target address must appear at the PC mux in cycle 2, when

the bne is in EX. Therefore for Execution A the path to the PC mux must be moved from ME to EX, that’s shown in blue. Similar

reasoning applies to Execution C.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

A: Provide a path for the target address
from EX to the PC mux in IF.

IR

Addr25:21

20:16

IF ID EX WB

ME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

C: Provide a path for the target address
from WB to the PC mux in IF.

E

8

� Is the execution below consistent with the unmodified implementation? © Yes or ×© No.

� If not, modify the implementation so that it is and �label your modifications A.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IFx

lui r5, 0x1234

ori r5, r5, 0x6789

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A

� Is the execution below consistent with the unmodified implementation? ×© Yes or © No.

� If not, modify the implementation so that it is and �label your modifications B.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IF IDx

lui r5, 0x1234 IFx

ori r5, r5, 0x6789

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B

� Is the execution below consistent with the unmodified implementation? © Yes or ×© No.

� If not, modify the implementation so that it is and �label your modifications C.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EXx

lui r5, 0x1234 IF IDx

ori r5, r5, 0x6789 IFx

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C

9

Problem 6: [15 pts] Answer each question below.

(a) Company A and B both come out with a new computer each year. Company A changes both the ISA
and implementation each year. Company B changes only the implementation each year but uses the same
ISA.

�Which company is following accepted practice?

Company B.

�Which company’s customers are more likely to stay with the company when it is time to upgrade to a new
model? �Explain.

Company B, because they do not need to re-write their software.

(b) In MIPS nop is a pseudo instruction.

�What is a pseudo instruction?

It is something that can be used as though it were a machine instruction in assembly language, even though no such instruction is

defined by the ISA or recognized by implementations. Instead, an assembler will translate a pseudoinsruction into a machine instruction

(or if necessary multiple machine instructions) that performs the operation defined for the pseudoinsruction. Pseudoinstructions are

provided as a convenience. For example, in MIPS it is easier to type nop than to type some other instruction that does nothing, such

as sll r0, r0, 0.

�Does having too many pseudo instructions make implementations too expensive? �Explain.

No, since they do not affect the hardware. For example, consider a collection of 500 pseudo-instructions including plus1 RS which

is translated to addi RS, RS, 1, pseudo-instruction left1 RS which is translated to sll RS, RS, 2, . . ., and less1

RT, RS which is translated to slti RT, RS, 1. All of these pseudoinstructions translate into an existing machine instruction

so their presence does not affect the ISA and therefore the implementation.

10

(c) The first code fragment below, from code presented in the course, loads element i of an array of integers.
(Here integers are four bytes.) Complete the second code fragment so that it loads element i from an array
of shorts (A short is two bytes.).

C CODE # ASM REGISTER = C VARIABLE NAME

int *a; ... # $s1 = a; $t0 = i sizeof(int) = 4 chars.

x = a[i];

sll $t5, $t0, 2 # $t5 -> i * 4; Each element is four characters.

add $t5, $s1, $t5 # $t5 -> &a[i] (Address of a[i].)

lw $t1, 0($t5) # x = a[i]; $t1 -> a[i]

�Complete code below so that it loads a short.

C CODE # ASM REGISTER = C VARIABLE NAME

short *a; ... # $s1 = a; $t0 = i sizeof(short) = 2 chars.

x = a[i];

SOLUTION

sll $t5, $t0, 1 # $t5 -> i * 2; Each element is two characters.

add $t5, $s1, $t5 # $t5 -> &a[i] (Address of a[i].)

lh $t1, 0($t5) # x = a[i]; $t1 -> a[i]

11

