
Name

Computer Architecture

LSU EE 4720

Midterm Examination

Wednesday, 29 March 2023 9:30-10:20 CDT

Alias

Problem 1 (17 pts)

Problem 2 (20 pts)

Problem 3 (16 pts)

Problem 4 (16 pts)

Problem 5 (16 pts)

Problem 6 (15 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/ee4720/

Problem 1: [17 pts] Candidate MIPS instruction subir r1, 22, r3 is to compute r1=22-r3, which can’t
be done with a single existing MIPS instruction. The 22 is taken from instruction bits 15:0, which is the
immediate field of Type-I instructions.

The subir instruction is to be encoded so that it can be executed by the implementation to the right with
the ALU computing X = A− B, the same operation used by existing subtract instructions. Notice that in
the implementation the immediate connects to both ALU inputs.

(a) Show how subir r1, 22, r3 instruction would be encoded for this hardware.

Show encoding of subir r1, 22, r3. Be sure to show the position of the fields and the field values
for the sample instruction.

Be sure that the encoding fits with the illustrated hardware and other MIPS instructions.

31 16

Immed

15 0

(b) Some control logic is shown for the implementation.

Modify the control logic that computes dst so that subir executes correctly. Do not design control logic
for the ALU multiplexors.

The control logic should not break existing instructions.

The control logic changes should be consistent with your answer to the previous part.

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

is Type R

is Store

is Branch

is J

is JAL

Dest is rd.

No dest (use r0).

Dest is r31.

Dest is rt.

rt 20:16

rd 15:11

5'd0

5'd31

00

11

01

10

lsb

msb

2'b0

msb lsb

=

format
immed

is SUBIR

A

B

X

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

Problem 2: [20 pts] Show the execution of the code fragments below on their accompanying MIPS
implementations.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

Show the execution of the code fragment below on the implementation above. Be sure to check for
dependencies.

addi r1, r2, 4

lw r3, 0(r1)

sw r1, 4(r3)

Show the execution of the code fragment below on the implementation above. Be sure to check for
dependencies.

addi r1, r2, 4

sw r1, 4(r3)

lw r3, 0(r1)

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Problem 2, continued:

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=
30 2

2'b0

PC

15:0

D

dstdst

Eformat
immed

=0
Z

N
31:31

Show the execution of the code fragment below on the implementation above. Be sure to check for
dependencies.

addi r1, r2, 4

lw r3, 0(r1)

sw r1, 4(r3)

Show the execution of the code fragment below on the implementation above. Be sure to check for
dependencies.

addi r1, r2, 4

sw r1, 4(r3)

lw r3, 0(r1)

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

Problem 3: [16 pts] Appearing below is the MIPS implementation with labeled multiplexor select signals
from Homework 3. Following that is an execution diagram along with a row showing select signal values for
the D multiplexor. The first instruction, add, is shown.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

E
D

C

0

B

1

A

0 1

F

Complete the code fragment so that it produces the values shown for D.

Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8

D: 1 0 1 2 3

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Problem 4: [16 pts] Rewrite each code fragment below so that it uses fewer instructions.

Simplify code fragment.

addi r1, r0, 123

add r1, r1, r2

Simplify code fragment.

lw r1, 0(r2)

addi r2, r2, 4

lw r2, 0(r2)

Simplify code fragment.

sub r1, r2, r3

beq r1, r0, TARG

lw r1, 0(r4)

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

Problem 5: [16 pts] Appearing below are two identical illustrations of one of our MIPS implementations.
To the right are three executions of a code fragment, only one of which is possible on the implementation.

Identify the execution that is possible. For each of the executions that is not possible modify one of the
illustrations below so that it is. The modification is very simple, just consider the target address. A few well
chosen lines will suffice. No logic gates.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Is the execution below consistent with the unmodified implementation? © Yes or © No.

If not, modify the implementation so that it is and label your modifications A.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IFx

lui r5, 0x1234

ori r5, r5, 0x6789

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION A

Is the execution below consistent with the unmodified implementation? © Yes or © No.

If not, modify the implementation so that it is and label your modifications B.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IF IDx

lui r5, 0x1234 IFx

ori r5, r5, 0x6789

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION B

Is the execution below consistent with the unmodified implementation? © Yes or © No.

If not, modify the implementation so that it is and label your modifications C.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C

bne r1, r2, TARG IF ID EX ME WB

add r1, r1, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EXx

lui r5, 0x1234 IF IDx

ori r5, r5, 0x6789 IFx

TARG:

xor r8,r9,r10 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 EXECUTION C

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

Problem 6: [15 pts] Answer each question below.

(a) Company A and B both come out with a new computer each year. Company A changes both the ISA
and implementation each year. Company B changes only the implementation each year but uses the same
ISA.

Which company is following accepted practice?

Which company’s customers are more likely to stay with the company when it is time to upgrade to a new
model? Explain.

(b) In MIPS nop is a pseudo instruction.

What is a pseudo instruction?

Does having too many pseudo instructions make implementations too expensive? Explain.

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(c) The first code fragment below, from code presented in the course, loads element i of an array of integers.
(Here integers are four bytes.) Complete the second code fragment so that it loads element i from an array
of shorts (A short is two bytes.).

C CODE # ASM REGISTER = C VARIABLE NAME

int *a; ... # $s1 = a; $t0 = i sizeof(int) = 4 chars.

x = a[i];

sll $t5, $t0, 2 # $t5 -> i * 4; Each element is four characters.

add $t5, $s1, $t5 # $t5 -> &a[i] (Address of a[i].)

lw $t1, 0($t5) # x = a[i]; $t1 -> a[i]

Complete code below so that it loads a short.

C CODE # ASM REGISTER = C VARIABLE NAME

short *a; ... # $s1 = a; $t0 = i sizeof(short) = 2 chars.

x = a[i];

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

