
Material in This Set

Material in This Set

These slides do not give detailed coverage of the material. See class notes and solved problems (last page) for more information.

Text covers multiple-issue machines in Chapter 4, but does not cover most of the topics presented here.

Outline

• Routes to Higher Performance (From 5-Stage Scalar MIPS)

• Superscalar Machines

• VLIW Machines

• Short Vector (SIMD) Instructions

• Deep Pipelining

• Parallelism
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Sample Problems � Easy

Sample Problems

Problems and solutions on https://www.ece.lsu.edu/ee4720/prev.html.

Easy

2018 fep1: 2-way. (a) Show PED for code only using mem insn. (b) Branch

2017 fep2: Show peds. One straight-line, one with loop. Show CPI of given.

2015 fep2: (c) PED of code with a branch.

2012 fep3: (b) Execution on 4-way SS w/o pred. (c) With perfect pred.
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Sample Problems � Medium Difficulty

Medium Difficulty

2019 fep1: 2-way: Bypass and datapath. Register substitution.

2018 fep1: 2-way. (c) Hardware for branch in slot 1.

2013 fep2: 2-way: (a) Control logic for stall. (b) Special case bypass.

2016 fep1: 2-way: datapath for shared store. Stall logic. Shared load.

2015 fep1: Fused add.

2014 fep2: (a) Logic for dependence within stage. (b) add/sw group.

2014 mtp6: (a) 2-way superscalar v. 10-stage impl.

2013 fep2: (a) Logic for dependence within stage. (b) add/lw group.
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Routes to Higher Performance

Routes to Higher Performance
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We Are Here

The elegant and efficient five-stage RISC implementation.

We have the fastest device technology available (assume).

We have the most talented digital logic designers (assume).

What if our five-stage implementation . . .

. . . is still not fast enough?
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Routes to Higher Performance

Faster Implementations — Higher Peak Performance

Deeply Pipelined Implementations: More stages ∴ higher φ.

Multiple Issue, Superscalar Implementations: Handle > 1 insn per cycle.

Short Vector (SIMD) Instructions

Smarter Implementations — Higher Typical Performance (But Same Peak Performance)

Dynamic Scheduling

Branch Prediction

Parallel Implementations — As much performance as you can afford*!

Multi-Core Chips, Multiprocessors

Computing Clusters

Distributed Systems
* Parallelization costs may apply. Results not guaranteed. Not all code is parallelizable, and not all parallelizable code is parallizable by all

programmers. Code may run slower, may be more difficult to debug, and harbor more latent bugs. Parallelization can be frustrating. Not
responsible for broken keyboards, monitors, etc.
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Multiple Issue � Definition

Multiple Issue

Multiple-Issue Machine:

A processor that can sustain fetch and execution of more than one instruction per cycle.

n-Way Superscalar Processor:

A multiple issue machine that can sustain execution of n > 1 instructions per cycle.

Scalar (Single-Issue) Processor:

A processor that can sustain execution of at most one instruction per cycle. A neologism for the five-stage MIPS implementation we
have been working with.

Sustain Execution of n IPC:

Achieve a throughput (IPC) of n for some code fragment . . .

. . . written by a friendly programmer . . .

. . . to avoid cache misses and otherwise avoid stalls.
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Multiple Issue � Types of Multiple Issue Machines

Types of Multiple Issue Machines

Superscalar Processor:

A multiple-issue machine that implements a conventional ISA (such as MIPS and Intel 64).

Code need not be recompiled.

General-purpose processors were superscalar starting in early 1990’s.

VLIW Processor:

A multiple-issue machine that implements a VLIW ISA . . .

. . . in which simultaneous execution considered. (More later.)

Since VLIW ISAs are novel, code must be re-compiled.

Idea developed in early 1980’s, . . .

. . . so far used in special-purpose and stillborn commercial machines, . . .

. . . and was used in Intel’s doomed next-generation processor, Itanium.
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Superscalar Machines � Relationship to Scalar Implementations

Superscalar Machines

n-Way Superscalar Machine Construction

Start with a scalar, a.k.a. single-issue, machine.

Duplicate hardware so that most parts can handle n instructions per cycle.

Don’t forget about control and data hazards.
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Superscalar Machines � Relationship to Scalar Implementations
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Superscalar Machines � Execution of simple code on 2-way SS MIPS:

Immed
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Stage-Related Terminology

Each stage has n slots, numbered 0, 1, . . .

Each slot holds one instruction.

Superscript on stage label indicates slot number.

Superscripts often omitted for brevity.

Execution of simple code on 2-way SS MIPS:

0x1000: # Cycle 0 1 2 3 4 5 6

add R1, r2, r3 IF0 ID0 EX0 ME0 WB0

sub r4, r5, r6 IF1 ID1 EX1 ME1 WB1

or R7, R1, r8 IF0 ID0 EX0 ME0 WB0

and r9, R7, r10 IF1 ID1 ---> EX1 ME1 WB1

# Cycle 0 1 2 3 4 5 6

Note that the stall in cycle 2 would not occur on a scalar MIPS.
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Superscalar Machines � Stalls in Superscalar Implementations

Stalls in Superscalar Implementations

As before, stall for true data dependencies. . .

. . . but now there are more of them.

Stall for structural hazards. (See examples further ahead.)

Stall to keep instructions in program order.

Program-order stalls make control logic much simpler.

See example on next slide.
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Superscalar Machines � Stalls in Superscalar Implementations � Example: stall to maintain program order

Example of stalling to keep instructions in program order.

In the example below xor is stalled to keep instructions in order.

0x1000: # Cycle 0 1 2 3 4 5 6

or R7, r1, r8 IF0 ID0 EX0 ME0 WB0

and r9, R7, r10 IF1 ID1 ---> EX1 ME1 WB1

xor r2, r3, r4 IF0 ---> ID0 EX0 ME0 WB0

add r5, r6, r8 IF1 ---> ID1 EX1 ME1 WB1

The and stalls due to a data dependence.

The add stalls because in cycle 2 ID1 is occupied by and.

The xor stalls to keep the instructions in ID in program order:

In cycle 2: ID0 is empty and ID1 holds and.

In cycle 3: ID0 holds xor and ID1 holds add.
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Superscalar Machines � Comparison of scalar, 2-way- and 4-way-superscalar execution.

Comparison of scalar, 2-way- and 4-way-superscalar execution.

0x1000: # Cycle 0 1 2 3 4 5 6 7 -- Scalar

add R1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

or R7, R1, r8 IF ID EX ME WB

and r9, R7, r10 IF ID EX ME WB

0x1000: # Cycle 0 1 2 3 4 5 6 7 -- 2-way

add R1, r2, r3 IF0 ID0 EX0 ME0 WB0

sub r4, r5, r6 IF1 ID1 EX1 ME1 WB1

or R7, R1, r8 IF0 ID0 EX0 ME0 WB0

and r9, R7, r10 IF1 ID1 ---> EX1 ME1 WB1

0x1000: # Cycle 0 1 2 3 4 5 6 7 -- 4-way

add R1, r2, r3 IF0 ID0 EX0 ME0 WB0

sub r4, r5, r6 IF1 ID1 EX1 ME1 WB1

or R7, R1, r8 IF2 ID2 ---> EX2 ME2 WB2

and r9, R7, r10 IF3 ID3 --------> EX3 ME3 WB3

For this example 4-way does not help.
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Superscalar Machines � Superscalar Challenges

Superscalar Challenges

Register File

Scalar: 2 reads, 1 write per cycle.

n-way: 2n reads, n writes per cycle.

Dependency Checking and Bypass Paths For ALU Instructions

Scalar, about 4 comparisons per cycle.

n-way, about n(2(2n+ n− 1) = 6n2 − 2n comparisons.

Loads-Use Stalls

Scalar, only following instruction would have to stall (if dependent).

n-way, up to the next 2n− 1 instructions would have to stall (if dependent).
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Superscalar Machines � Superscalar Challenges

Instruction Fetch

Memory system may be limited to aligned fetches . . .

. . . for example, if branch target is 0x1114 . . .

. . . instructions starting at 0x1110 may be fetched (and the first ignored) . . .

. . . wasting fetch bandwidth.
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Superscalar Machines � Typical Superscalar Processor Characteristics

Typical Superscalar Processor Characteristics

Instruction Fetch

Instructions fetched in groups, which must be aligned in some systems.

Unneeded instructions ignored.

Instruction Decode (ID)

Entire group must leave ID before next group (even 1 insn) can enter.

Execution

Not all hardware is duplicated . . .

. . . and therefore some instruction pairs cause stalls.

For example, early processors could simultaneously start one floating-point and one integer instruction . . .

. . . but could not simultaneously start two integer instructions.
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Superscalar Machines � Example: 2-Way Superscalar MIPS with One Memory Port

Example: 2-Way Superscalar MIPS with One Memory Port
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VLIW

VLIW

Very-Long Instruction Word (VLIW):

An ISA or processor in which instructions are grouped into bundles which are designed to be executed as a unit.

Explicitly Parallel Instruction Computing:

Intel’s version of VLIW. Here, VLIW includes EPIC.

Key VLIW Features

Instructions grouped in bundles.

Bundles carry dependency information.

Can only branch to beginning of a bundle.
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VLIW � Current Examples � Texas Instruments VelociTI

Current Examples

Texas Instruments VelociTI (Implemented in the C6000 Digital Signal Processor).

Intended for signal processors, which are usually embedded in other devices . . .

. . . and do not run general purpose code.
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VLIW � Current Examples � Intel Itanium

Intel Itanium (née IA-64) ISA (Implemented by Itanium, Itanium 2).

Intended for general purpose use.

Never became popular, is now discontinued.

VLIW-Related Features

Instructions grouped into 128-bit bundles.

Each bundle includes three 41-bit instructions and five template bits.

Template bits specify dependency between instructions and the type of instruction in each slot.

Other Features

128 64-bit General [Purpose Integer] Registers

128 82-bit FP Registers

Many additional special-purpose registers.

Makes extensive use of predication.

-20 LSU EE 4720 Lecture Transparency. Formatted 9:21, 24 April 2023 from lsli11-TeXize. -20



VLIW � Current Examples � Cray Tera MTA

Cray Tera MTA implemented by the Tera Computer Company.

(Tera bought by Cray.)

Intended for scientific computing.

VLIW-Related Features

Instructions grouped into 64-bit bundles.

Each bundle holds three instructions.

Restrictions: one load/store, one ALU, and one ALU or branch.

Bundle specifies number of following non-dependent bundles in a lookahead field.

Serial bit for specifying intra-bundle dependencies.
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VLIW � Current Examples � Cray Tera MTA

Other Features

Radical: Can hold up to 128 threads, does not have data cache.

Ordinary: 32 64-bit registers.

Extra bits on memory words support inter-processor synchronization.

Branches can examine any subset of 4 condition code registers.
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VLIW � VLIW Bundle and Slot Definitions

VLIW Bundle and Slot Definitions

Bundle: a.k.a. packet

The grouping of instructions and dependency information which is handled as a unit by a VLIW processor.

Slot:

Place (bit positions) within a bundle for an instruction.

A typical VLIW ISA fits three instructions into a 128-bit bundle . . .

. . . such a bundle is said to have three slots.

Example: Itanium (née IA-64)

Bundle Size, 128 bits; holds three instructions.

Slot 2

127 87

Slot 1

86 46

Slot 0

45 5

dep. info

4 0
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VLIW � Instruction Restrictions In Bundles

Instruction Restrictions In Bundles

ISA may forbid certain instructions in certain slots . . .

. . . e.g., no load/store instruction in Slot 1.

Tera-MTA: Three slots per 64-bit bundle. (Slot 0, Slot 1, Slot 2.)

Slot 0: Load/Store

Slot 1: ALU

Slot 2: ALU or Branch

Itanium (née IA-64): Three slots per 128-bit bundle.

Slot 0: Integer, memory or branch.

Slot 1: Any instruction

Slot 2: Any instruction that doesn’t access memory.

There are further restrictions.
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VLIW � Dependency Information in Bundles

Dependency Information in Bundles

Common feature: Specify boundary between dependent instructions.

add r1, r2, r3

sub r4, r5, r6

# Boundary: because of r1 instruction below might wait.

xor r7, r1, r8

Because dependency information is in bundle less hardware is needed to detect dependencies.

How Dependency Information Can Be Specified (Varies by ISA):

• Lookahead:

Number of bundles before the next true dependency.

• Stop:

Next instruction depends on earlier instruction.

• Serial Bit:

If 0, no dependencies within bundle(can safely execute in any order).
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VLIW � Dependency Information in Bundles � Specifying Dependencies Using Lookahead

Specifying Dependencies Using Lookahead

Used in: Tera MTA.

Lookahead:

The number of consecutive following bundles not dependent on current bundle.

If lookahead 0, may be dependencies between current and next bundle.

If lookahead 1, no dependencies between current and next bundle, but may be dependencies between current and 2nd following bundle.

Setting the lookahead value:

Compiler analyzes dependencies in code, taking branches into account.

Sets lookahead based on nearest possible dependency.
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VLIW � Dependency Information in Bundles � Specifying Dependencies Using Lookahead

Lookahead Example: (Two-instruction bundles.)

Bundle1: add r1, r2, r3

add r4, r5, r6

Lookahead = 1 # Bundle 2 not dependent.

Bundle2: add r7, r7, r9

add r10, r11, r12

Lookahead = 2 # Bundle 3 and Bundle 1 not dependent.

Bundle3: add r2, r1, r14

bne r20, Bundle1

Lookahead = 0 # Bundle 1 is dependent.

Bundle4: add r18, r8, r19

bne r21, Bundle1

Lookahead = 11 # Assuming twelfth bundle below uses r18.

Bundle5: nop

nop

# (Next 10 bundles contain only nops)
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VLIW � Dependency Information in Bundles � Specifying Dependencies Using Stops

Specifying Dependencies Using Stops

Used by: Itanium (née IA-64)

Stop:

Boundary between instructions with true dependencies and output dependencies.

Stop (and taken branches) divide instructions into groups.

Groups can span multiple bundles.

Within a group true and output register dependencies are not allowed, with minor exceptions.

Memory dependencies are allowed.

Assembler Notation (Itanium): Two consecutive semicolons: ;;.

Example:

L1: add r1= r2, r3

L2: add r4= r5, r6 ;;

L3: add r7= r1, r0 ;;

L4: add r8= r7, r0

L5: add r9= r4, r0
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VLIW � Dependency Information in Bundles � Specifying Dependencies Using Stops

! Three groups: Group 1: L1, L2; Group 2: L3; Group 3: L4, L5
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VLIW and Superscalar Comparison

VLIW and Superscalar Comparison

What is Being Compared

An n-way superscalar implementation of conventional ISA.

An n-way implementation of a VLIW ISA.

Common Benefit

Can potentially execute n instructions per cycle.
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Vector Instructions

Vector Instructions

ISA Aspects of Vector Instructions:

CPU has a set of vector registers, typically 128 to 512 bits.

Each register holds several values.

Vector instruction performs operation on each value.
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Vector Instructions

Example: (Intel-64 AVX)

Consider MIPS Code
add.s f0, f2, f4

add.s f6, f8, f10

add.s f12, f14, f16

add.s f18, f20, f22

add.s f24, f26, f28

add.s f30, f32, f34 # MIPS actually lacks f32 and greater.

add.s f36, f38, f40

add.s f42, f44, f46

Equivalent Intel-64 AVX Code

ymm0 - ymm15 are 256-bit vector registers, each holding 8 singles.

# ymm9 = { 1.1, 1.2, ..., 1.8 }

# ymm8 = { 2.01, 2.02, ..., 2.08 }

vaddps %ymm9, %ymm8, %ymm10 # ymm10 = ymm9 + ymm8 vaddps: Vector ADD Packed Single-precision

# ymm10 = {3.11, 3.22, ... 3.88}.
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Vector Instructions � Vector Instruction Implementation

Vector Instruction Implementation

Front
End

FP Func Unit Lane 1
FP Regs
Lane 1

IF ID

F1 F2 F3 F4 F5 F6 F7 F8

Control

FP Func Unit Lane n

Int unit
now shown.

FP Regs
Lane n

One insn for
all n lanes.
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Vector Instructions � Vector Instruction ISA Extensions

Vector Instruction ISA Extensions

IA-32, Intel 64

First Vector Extension: MMX— 64-bit vector registers.

SSE, SSE2-SSE4: 128-bit vector registers.

AVX, AVX2: 256-bit vector registers.

AVX512: 512-bit vector registers.

ARM:

A64 Advanced SIMD: 32 × 128-bit vector registers.

A32, T16 Advanced SIMD: 32 × 64-bit vector registers.
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Deep Pipelining

Deep Pipelining

Deep Pipelining:

Increasing or using a large number of stages to improve the performance.

If each stage in a base design can be divided into exactly n stages . . .

. . . such that the critical path in the new stages is 1
n of the base design . . .

. . . and if pipeline latches have zero setup time . . .

. . . then performance will be n times larger.
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Deep Pipelining � Pipelining Performance

Pipelining Performance

Let tn denote the time or an instruction to traverse an n-stage pipe.

Let tL denote the setup time for a pipeline latch.

The latency of an n-stage unit is then

tn = t1 + (n− 1)tL

and the clock frequency is

φ =

(
tL +

t1
n

)−1

; or when tL � t1
n

, φ ≈ n

t1
,

assuming that the unit is split perfectly into n pieces.
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Parallelism

Parallelism

Parallelism:

Execution of multiple operations at the same time.

Serial Execution Model:

An execution model in which instructions have an exact program-determined order in which an instruction starts only after its predecessor
finishes.

Instruction-Level Parallelism:

The parallel execution of instructions of a program in a serial execution model such that results are no different than if the instructions
executed serially.
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