
LSU EE 4720 Homework 5 Solution Due: 21 April 2023

Problem 1: In this problem consider the encoding of integer and floating-point addition instructions in
MIPS and RISC-V. Descriptions of MIPS and RISC-V are linked to the course references page,
https://www.ece.lsu.edu/ee4720/reference.html.

(a) Show the encoding of MIPS instructions add r1, r2, r3 and add.s f4, f5, f6.

The encoding of add r1, r2, r3 is:

MIPS

Opcode

0

31 26

rs

2

25 21

rt

3

20 16

rd

1

15 11

sa

0

10 6

func

10 0000

5 0

Instruction add.s f4, f5, f6 is floating-point and in MIPS its format differs significantly from the integer instructions.

(In many ISAs FP and integer instructions are encoded differently.) The register number fields are in different positions, and there is

a format field, fmt, for specifying whether the operands are single- or double-precision. (The values for the fmt field can be found

in Volume I Appendix A in Table A-11, in which the fmt field is confusingly called the rs field.)

MIPS

Opcode

01 00012

31 26

fmt

100002

25 21

ft

6

20 16

fs

5

15 11

fd

4

10 6

func

0

5 0

(b) Show the encoding of RISC-V RV32IF instructions add x7, x8, x9 and fadd f10, f11, f12.

The encoding for add x7, x8, x9 appears below. The encoding is most conveniently found in Chapter 24, RV32/64G

Instruction Set Listing.

RISC-V R:

func7

0

31 25

rs2

9

24 20

rs1

8

19 15

fun3

0002

14 12

rd

7

11 7

opcode

OP=011 00112

6 0

The encoding for fadd f10, f11, f12 appears below. The encoding is most conveniently found in Chapter 24, RV32/64G

Instruction Set Listing, in the table for RV32F. The problem did not specify which rounding mode (rm)to use, the encoding below

uses round-to-nearest, ties to even.

RISC-V R:

func5

0

31 27

fmt

002

26 25

rs2

12

24 20

rs1

11

19 15

rm

0002

14 12

rd

10

11 7

opcode

OP-FP=101 00112

6 0

(c) Notice that the register fields in the integer and floating-point RISC-V RV32IF instructions are the
same, while the register fields in the two MIPS instructions are different. One possible reason for RISC-V’s
matching fields was to simplify implementations of the Zfinx variant. (Web search for it.) How do the
matching fields reduce the cost of implementations of the RISC-V Zfinx variant?

In the Zfinx variant there is no separate floating-point register file. Instead, both integer and floating-point instructions’ operands

are from the same register file, the integer register file. Because integer and FP instructions operand fields are in the same place the

connections from needed to retrieve integer instruction operands will also work for floating-point instruction operands.

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/reference.html

ARM A64 Background
The following background will help in solving the next problem. MIPS and many other ISAs have a set of
integer registers and a set of floating-point registers. Many newer ISAs, including ARM A64, have a set of
vector registers in lieu of floating-point registers. Extensions of legacy ISAs, such as Intel 64 AVX2, have
vector registers but retain floating-point registers for compatibility.

In many ISAs, including ARM A64, a vector register can be used to hold one FP value, just as a
traditional FP register would, or a vector register can hold several values. Scalar instructions read or write
one value per vector register, and vector instructions read and write multiple values per register.

In ARM A64 there are 32 128-bit vector registers, named v0 to v31. When used in scalar instructions
operating on single-precision FP values they are known by the names s0 to s31 and by the names d0 to d31

by double-precision scalar instructions. For example, the ARM A64 assembler instruction fadd s0, s1,

s2 computes s0=s1+s2 and fadd d0, d1, d2 computes d0=d1+d2. In both cases the operands were taken
from vector registers v0, v1, and v2. The assembler name s0 means use the low 32 bits of v0 and interpret
the value as an IEEE 754 single. The assembler name d0 means use the low 64 bits of v0 and interpret the
value as an IEEE 754 double.

In the next problem, the one with sum_thing_unusual, the ARM code contains only scalar floating
point instructions and base (integer register) instructions. To solve the next problem one needs to look up
instructions in the ARM Architecture Reference Manual. Instructions that operate on vector registers, in-
cluding fadd can be found in the Advanced SIMD and Floating Point section, C7.2 for the list of instructions.
Other instructions can be found in the A64 Base Instruction section, C6.2 for the list of instructions.

Vector instructions are not needed in this assignment, but they will be briefly described anyway. For
vector instructions the vector register name indicates how many elements in the vector to use, and what
their format is. For example, v0.4s, means to use vector register v0 and to split its 128 bits into 4 32-bit
lanes, with each lane holding one float (the s). The names can be used in instructions such as fadd v0.4s,

v0.4s, v1.4s. This instruction performs four additions, one on each lane of the vector register.

2

Problem 2: Appearing below is a C++ procedure with a for loop that computes the sum of elements in
an array. This would be a totally ordinary loop were it not for the fact that the iteration variable, i, and
the increment, delta, are both floats. Since i is a float the number of iterations, depending on delta,
can be less than 1024 (say, if delta=2.3) or more than 1024 (say, if delta=0.25). Below the C code are
MIPS-I and ARM A64 assembler versions of the loop. Yes, that means you don’t have to write them! (The
MIPS-I code was hand written, and the A64 was based on code generated by a compiler.) Notice that the
ARM code is shorter than the MIPS code. That’s because some of the ARM instructions do the equivalent
of several MIPS instructions.

� Next to each ARM instruction indicate the MIPS instruction(s) from the MIPS code that it corresponds to.

� When an ARM instruction corresponds to more than one MIPS instruction explain what the ARM instruction
is doing.

A short reference for MIPS floating-point instructions is the course lfp.s notes. This should be sufficient
for all but the MIPS-II trunc instruction. For the trunc instruction see the MIPS documentation (linked
to the course ISA page).

float sum_thing_unusual(float *a, float delta) {

float sum = 0;

for (float i = 0; i < 1024; i += delta) sum += a[int(i)];

return sum;

}

MIPS Code for sum_thing_unusual.

#

$a0: The address of array a.

$f0: i. At this point it contains a zero.

$f4: delta.

$f5: The constant 1024, in FP format.

$f8: sum. At this point it contains a zero.

LOOP:

trunc.w.s $f6, $f0 # Note: This is a MIPS-II instruction.

mfc1 $t1, $f6

sll $t1, $t1, 2

add $t2, $t1, $a0

lwc1 $f7, 0($t2)

add.s $f0, $f0, $f4

c.lt.s $f0, $f5

bc1f LOOP

add.s $f8, $f8, $f7

Solution on next page.

3

The ARM instruction use is described below. Unlike MIPS, the ARM64 conversion instruction converts from FP to integer

format, and writes the result to the integer register file. The ARM memory instructions, including ldr, can do more to compute an

address than MIPS load instructions. They not only can add two registers, but also shift one of the registers, reducing the amount

of code needed for array access.

.arch arm

@ ARM A64 Code for sum_thing_unusual.

@

@ x0-x31: Integer registers. x31 is sometimes the zero register.

@ s0-s31: Scalar single-precision floating-point registers.

@

@ x0: The address of array a.

@ s0: sum. At this point it contains a zero.

@ s1: i. At this point it contains a zero.

@ s3: delta.

@ s4: The contains 1024, in FP format.

@@ SOLUTION
LOOP:

fcvtzs x1, s1

@ MIPS trunc. and mfc1.

@ Convert FP in s1 to an integer, with truncation and write

@ result in integer register x1.

fadd s1, s1, s3 @ MIPS add.s f0

fcmpe s1, s4

@ The closest equivalent instruction is MIPS c.lt.s.

@ But this instruction sets the comparison flags, NZCV, based

@ on the comparison. (The names N, Z, C, V are for the result

@ of an integer operation, but ARM uses the for FP comparisons too.)

ldr s2, [x0, x1, lsl 2]

@ MIPS sll, add, lwc1

@ ldr first computes an address by shifting x1 left two bits,

@ then adds the result to x0. The memory at that address (and

@ the three following) is read and the value placed in

@ register s2. Put another way:

@ s2 = Mem[x0 + x1*4];

fadd s0, s0, s2 @ MIPS add.s f8

bmi LOOP @ MIPS bc1t and partly c.lt.s

4

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2

