
LSU EE 4720 Homework 4 Solution Due: 19 April 2023

In the problems below a new MIPS instruction, integer fmadd, (hypothetical of course) is to be added to our
pipelined MIPS implementation. A simpler implement-the-instruction problem was the subject of Fall 2010
Homework 3, in which a shift unit is added to MIPS to implement shift instructions. The 2010 problem is
simpler because the shift unit occupies just one stage, while the fmadd for this assignment spans multiple
stages. For past assignments in which integer arithmetic hardware spans several stages see 2020 Homework
2, 3, and 4 and 2020 midterm exam Problem 5. In these 2020 problems an integer multiply instruction was
to be implemented.

Problem 1: A fused multiply/add instruction, such as fmadd r1, r2, r3, r4, computes r1 = r2r3 + r4.
Such instructions are useful for both floating-point and integer calculations, and integer version is considered
here. The goal in this problem is to extend MIPS with an integer multiply/add instruction, fmadd. The
new fmadd instruction will be encoded in MIPS Format R with the SA field being used to specify the third
source register, r4 in the example.

MIPS R:

Opcode

0

31 26

RS

2

25 21

RT

3

20 16

RD

1

15 11

SA

4

10 6

Function

fmadd

4 0

The hardware to compute the multiply/add will consist of two types of units: a carry-save multiplier
(CSM) and integer adders (labeled ADD). The connection of these two types of units needed to compute a
multiply/add are shown below.

CSM ADDA

B

A×B

A×B+C.9 .45 ADD

.45

C

The CSM takes 0.9 clock cycles to compute a result and each adder takes 0.45 clock cycles, so the critical
path through the hardware shown above is 1.8 clock cycles. Because the critical path is greater than one
clock cycle the hardware cannot be placed in one stage. (Unless the clock frequency were to be decreased
from φ to φ/1.8, which would slow everything down and so of course we don’t want to do it.)

1

https://www.ece.lsu.edu/ee4720/

Note: For the three parts below a single hardware solution can be provided. That is, a correct solution to part
c also can be a correct solution to parts b and a, and so there is no need to draw three hardware designs.

(a) Add the CSM and ADD units to the MIPS implementation below to efficiently implement the fmadd

instruction. For this sub-problem provide the hardware needed so that fmadd can execute without stalls
when there are no nearby dependencies, such as in the execution below.

There are no dependencies in this code fragment.

Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

fmadd r7, r8, r9, r10 IF ID EX ME WB

fmadd r11, r12, r13, r14 IF ID EX ME WB

xori r15, r16, 17 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8

Put your solution on the larger diagram several pages ahead.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Put your solution on the larger diagram several pages ahead.

� Add the CSM and ADD units to the implementation above so that the can implement the fmadd instruction.

� Provide the datapath needed so that operands can reach the CSM and ADD units and � the result can
reach the register file.

� Don’t forget that this instruction has three source operands.

� Do not increase the critical path.

� As always, consider cost. Assume that an n-bit register costs twice as much as an n-bit, 2-input multiplexor.

� fmadd should execute without stalls when there are no nearby dependencies.

� Do not design control logic for this assignment.

The solution and its discussion appear several pages ahead.

2

(b) In the code fragments below the fmadd depends on prior instructions.

� Add bypass paths to the fmadd implementation so that all of the executions below are possible.

The solution and its discussion appear on the next page.

Fragment A

Cycle 0 1 2 3 4 5 6

add R1, r2, r3 IF ID EX ME WB

sub R4, r5, r6 IF ID EX ME WB

fmadd r7, R1, R4, r9 IF ID EX ME WB

Fragment B

Cycle 0 1 2 3 4 5 6 7

sub R9, r5, r6 IF ID EX ME WB

fmadd R7, r1, r4, R9 IF ID EX ME WB

fmadd r2, r3, r5, R7 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

Fragment C

Cycle 0 1 2 3 4 5 6

add R1, r2, r3 IF ID EX ME WB

lw R9, 0(r10) IF ID EX ME WB

fmadd r7, R1, r4, R9 IF ID EX ME WB

(c) Using additional ADD unit(s) modify the implementation so that it can execute Fragments L and D
correctly. This will require some tricky bypassing. Note that stalls will be needed when the dependent
instruction following the fmadd does not use the adder, such as in Fragment E. Note: In the original
problem just one adder was to be used. That is probably impossible without critical path impact.

� Add a second adder and bypass paths so that fragments L and D execute as shown.

The solution and its discussion appear on the next page.

Fragment L

Cycle 0 1 2 3 4 5 6

fmadd R7, r1, r4, r9 IF ID EX ME WB

lw r10, 16(R7) IF ID EX ME WB # No stall!

Fragment D

Cycle 0 1 2 3 4 5 6

fmadd R7, r1, r4, r9 IF ID EX ME WB

add r2, R7, r3 IF ID EX ME WB # No stall!

Fragment E

Cycle 0 1 2 3 4 5 6

fmadd R7, r1, r4, r9 IF ID EX ME WB

or r2, R7, r3 IF ID -> EX ME WB # A stall. :-(

3

Use the diagram below for your solution, or download
https://www.ece.lsu.edu/ee4720/2023/mpipei3.svg and edit with your favorite SVG editor. (The dia-
gram was drawn with Inkscape.)

Solution appears below. The changes for parts a and b are shown in blue and the changes for part c are shown in green.

For part a, the most important thing was not to put CSM and an ADD in the same stage, because the delay of CSM already

used most of the clock cycle. Notice that CSM’s inputs are obtained from the ALU’s multiplexors, so that for the multiplier and

multiplicand operands of fmadd no further changes are needed for bypassing.

The fmadd instruction uses a third source operand, sa. For this operand a third read port is added to the register file (in

ID). In EX the sa value uses the rtv path to reach ME, saving the need for an sav pipeline latch between EX and ME. The output

of the second ADD is the result of the fmadd instruction, it is connected to a new mux at the top of ME where it joins the path

leading to the register file input.

The changes described above provide the bypass paths needed for Fragment A. For fragments B and C a bypass is needed for

the sa value, for example R9 in Fragment C. That bypass is provided by the mux in the lower part of ME. Other bypasses needed

for the sa value are provided by the existing mux that provides a value for the ME.rtv pipeline latch.

For part c two ADD units are used, these are shown in green. (The original problem was to use just one, which is probably

impossible without critical path impact.)

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

CSM
ADD

10:6 Addr Data

sav
ADD

ADD
ADD

4

https://www.ece.lsu.edu/ee4720/2023/mpipei3.svg

	Problem 1
	Part char 97
	Part char 98
	Part char 99

