
LSU EE 4720 Homework 3 Solution Due: 24 March 2023

Problem 1: Appearing below are incorrect executions on the illustrated implementation. For each exe-
cution explain why it is wrong and show the correct execution. Note: This problem was assigned in 2020,
2021, and 2022, and their solutions are available. DO NOT look at the solutions unless you are lost and
can’t get help elsewhere. Even in that case just glimpse.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(a) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID -> EX ME WB

There is a bypass path available so that there is no need to stall.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID EX ME WB

1

https://www.ece.lsu.edu/ee4720/

(b) The execution of the branch below has two errors. One error is due to improper handling of the andi

instruction. (That is, if the andi were replaced with a nop there would be no problem in the execution
below.) The other is due to the way the beq executes. As in all code fragments in this problem, the program
is correct, the only problem is with the illustrated execution timing.

Cycle: 0 1 2 3 4 5 6 7 8

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

xor IFx

TARG:

sw r6, 7(r8) IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8

Briefly, the two problems are the lack of a stall for the andi/beq dependence carried by r2 and because the branch target is

fetched one cycle later than it should be. The correct execution appears below.

Detailed explanation: In the illustrated implementation the = in ID is used to compute the branch condition for beq (and

bne). When the branch reaches ID, in cycle 2, the value of r2 retrieved from the register file is outdated, it needs to use the value

computed by andi. Since there are no bypass paths to the = logic the branch will need to stall until andi reaches writeback.

The stalls occur in cycles 2 and 3.

The illustrated implementation resolves the branch in ID, and so the branch target should be in IF when the branch is in EX.

In the execution above the target isn’t fetched until the branch is in ME, in cycle 4. That is fixed below by fetching the target a cycle

earlier. The xor is no longer fetched and squashed.

Cycle: 0 1 2 3 4 5 6 7 8 9 SOLUTION

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID ----> EX ME WB

add r3, r4, r5 IF ----> ID EX ME WB

xor

TARG:

sw r6, 7(r8) IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8 9

2

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(c) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches

ME so that the add can bypass from WB.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID -> EX ME WB

(d) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because r1 is not a source register of lw. Note that r1 is a destination of lw.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

3

(e) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

No stall is needed here because the sw can use the ME-to-EX bypass path.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EX ME WB

4

Problem 2: Illustrated below is a MIPS implementation in which each multiplexor has a label, such as a
circled A at the multiplexor providing a value for the PC. (The implementation debuted on the 2018 midterm
exam.) The multiplexor inputs are also numbered. Below the illustration an execution of the program on
the implementation is shown for two iterations of a loop. Below the execution is a table with one row for
each labeled multiplexor. Complete the table so that it shows the values on the multiplexors’ select signals
at each cycle based on the execution. Leave an entry blank if its value does not make a difference.

Wire thicknesses and colors have been varied to make it easier to trace them through the diagram. Before
attempting this problem, solve 2018 Midterm Exam Problem 2b, which also appeared as 2022 Homework 3
Problem 2. Also see the 2014 Midterm Exam Problem 1 for a similar problem.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

E
D

C

0

B
1

A

0 1

F

Continued on the next page.

5

� Complete the table (the rows starting with A:, B:, etc.) based on the execution below.

� Omit select signal values if they do not matter. For example, omit values for E for cycles in which there is
not a store instruction in EX.

� Assume that the branch is taken the second time it appears. (No assumption needed for its first appearance.)

addi r1, r1, -4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9

sw r2, 4(r1) IF ID EX ME WB

lw r1, 8(r2) IF ID EX ME WB

bne r2, r3, LOOP IF ID EX ME WB

add r2, r2, r6 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9

sw r2, 4(r1) IF ID EX ME WB

lw r1, 8(r2) IF ID EX ME WB

bne r2, r3, LOOP IF ID EX ME WB

add r2, r2, r6 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

A: 3 3 3 3 1 3 3 3 1

B:

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

C: 2 0 2 2 2 3 2

D: 2 2 2 1 2 2 1

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

E: 1 0

F: 1 0 1 0 1

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

6

Problem 3: Show the execution of the code fragments on the following implementations for enough iter-
ations to determine the instruction throughput (IPC). As always, base the behavior of branches and the
availability of bypasses on the implementations. Also, don’t forget that MIPS branches have a delay slot.
Sorry for yelling, but I hate it when students miss things.

This problem appeared as most of Problem 1 on the 2022 Final Exam. A solution is not yet available.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

� Show execution and � determine instruction throughput (IPC) based on a large number of iterations.

The solution appears below. The branch is resolved in ME, and so the target is fetched (in IF) in the next cycle, when the

branch is in WB. Two wrong-path instructions are fetched, xor and sub. They are squashed when the branch is resolved. (Of course,

they would not be squashed if the branch were not taken.)

The instruction throughput is 2 insn
(8−4) cyc = 2

4 insn/cycle based on the second iteration starting at cycle 4 and the third

iteration starting at cycle 8.

SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

xor r5, r6, r7 IF IDx

sub r8, r9, r10 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB # Second Iteration

addi r1, r1, 4 IF ID EX ME WB

xor r5, r6, r7 IF IDx

sub r8, r9, r10 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB

...

These instructions will be completely executed after the last iteration.

xor r5, r6, r7

sub r8, r9, r10

7

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

� Show execution and � determine instruction throughput (IPC) based on a large number of iterations.

The solution appears below. The good news in this pipeline the branch is resolved in ID, meaning that zero wrong-path

instructions are fetched. The bad news is that there is a dependence carried by r1 that stalls bne in ID for two cycles. For this

reason, the instruction throughput is the same: 2 insn
(6−2) cyc = 2

4 insn/cycle based on the second iteration starting at cycle 2 and

the third iteration starting at cycle 6.

LOOP: # Code in Static Instruction Order

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10

SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID ----> EX ME WB # Second Iteration

addi r1, r1, 4 IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID ----> EX ME WB

addi r1, r1, 4 IF ----> ID EX ME WB

These instructions will be executed after the last iteration.

xor r5, r6, r7

sub r8, r9, r10

8

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

1
0

� Show execution and � determine instruction throughput (IPC) based on a large number of iterations.

In this implementation there is a bypass that helps with the branch condition dependence, reducing the stall from two cycles to

one cycle. The instruction throughput is higher, 2 insn
(5−2) cyc = 2

3 insn/cycle based on the second iteration starting at cycle 2 and

the third iteration starting at cycle 5.

LOOP: # Code in Static Instruction Order

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10

SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID -> EX ME WB # Second Iteration

addi r1, r1, 4 IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID -> EX ME WB

addi r1, r1, 4 IF -> ID EX ME WB

9

	Problem 1
	Part char 97
	Part char 98
	Part char 99
	Part char 100
	Part char 101

	Problem 2
	Problem 3

