
LSU EE 4720 Homework 2 Solution Due: 8 March 2023

Problem 1: The code fragment below was taken from the course hex string assembly example. (The hex
string example was not covered this semester. The full example can be found at
https://www.ece.lsu.edu/ee4720/2022/hex-string.s.html.) The fragment below converts the value in
register a0 to an ASCII string, the string is the value in hexadecimal (though initially backward).

LOOP:

andi $t0, $a0, 0xf # Retrieve the least-significant hex digit.

srl $a0, $a0, 4 # Shift over by one hex digit.

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

sb $t2, 0($a1) # Store the digit.

bne $a0, $0, LOOP # Continue if value not yet zero.

addi $a1, $a1, 1 # Move string pointer one character to the left.

(a) Show the encoding of the MIPS bne a0, 0, LOOP instruction. Note: This is not the same as
the instruction used in last year’s Homework 2. Include all parts, including—especially—the immediate.
For a quick review of MIPS, including the register numbers corresponding to the register names, visit
https://www.ece.lsu.edu/ee4720/2023/lmips.s.html.

The encoding appears below. Note that register a0 (procedure call argument 0) is a helpful name for r4, and so a 4 is placed

in the rs field. If the bne is taken it jumps backward by eight instructions (starting from the delay-slot instruction), and so the

immediate field holds a -8 (which is 1111 1111 1111 10002 in a two’s complement, 16-bit representation).

MIPS I:

Opcode

0x05

31 26

RS

4

25 21

RT

0

20 16

Immed

1111 1111 1111 10002

15 0

(b) RISC-V RV32I has a bne instruction too, though it is not exactly the same. Show the encoding of the
RV32I version of the bne a0, 0, LOOP instruction. For this subproblem assume that the bne will jump
backward eight instructions, just as it does in the code sample above.

To familiarize yourself with RISC-V start by reading Chapter 1 of Volume I of the RISC-V specification,
especially the Chapter 1 Introduction and Sections 1.1 and 1.3. Skip Section 1.2 unless you are comfortable
with operating system and virtualization concepts. Other parts of Chapter 1 are interesting but less relevant
for this problem. Also look at Section 2.5 (Control Transfer Instructions). The spec can be found in the
class references page at https://www.ece.lsu.edu/ee4720/reference.html.

The branch instructions are discussed in Section 2.5 under the Conditional Branches heading. There are two significant

differences with the MIPS bne. First, there is no delay slot. That’s not relevant in this problem. Second, the immediate field value

is used differently. Let IMM denote the immediate field value (based on the bits set in the instruction). The branch target is then

PC + 2 * IMM, where PC is the address of the branch. (In MIPS the target would be PC + 4 + 4 * IMM.) So, we need to

set the immediate to the number of bytes to skip divided by two. The problem says to jump back eight instructions, in RISC-V (and

most RISC ISAs) that’s 32 bytes, and so the immediate field should be set to -16 which is 1111 1111 00002 in a two’s complement,

12-bit representation.

Though Section 2.5 shows the encoding of a bne instruction, it does not provide the values for opcode fields and their extensions,

instead using names: BRANCH for the opcode field and BNE for the funct3 field. The values can be found in Chapter 24.

The encoding appears below. The instruction field names have been abbreviated, such as im12 for imm[12]. Also note that in

RISC-V immediate field names use the bit numbers within the immediate. So, for example, imm[4:1] (abbreviated im4:1 below)

indicates that the four bits in the instruction field (00002 in the example) are placed in bit positions 4:1 of the immediate. There is

no field named imm[0] because the corresponding immediate bit is always set to zero. So, the IMM*2 is computed by putting the

twelve immediate bits in the instruction in bits 12:1 of the immediate, setting bit 0, the LSB, to zero.
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In MIPS format I-instructions the 16-bit immediate is put in bits 15:0 of the instruction, which is straightforward and easy to

understand. In RISC-V B-format instructions the 12-bit immediate is scrambled into four fields of the instruction. Following the

convention of the B-format instruction the immediate bit positions will be numbered 12 to 1. (There is a bit position zero but it is

always zero and so it does not appear in the instruction.) Bit 12 of the immediate is found in bit position 31 of the instruction. Bits

10:5 [sic] of the immediate are in bits 30:25 of the instruction. Where is bit 11 of the immediate? It’s at bit 7, hanging out next to

bits 4:1 of the immediate which are at bits 11:8 of the instruction. This bit scrambling is done to simplify hardware, as is explained in

section 2.3 of the RISC-V standard. A question about the rationale for this bit scrambling may be asked on the 2023 midterm exam.

RISC-V B:

im12

12

31

im10:5

11 11112

30 25

rs2

0

24 20

rs1

4

19 15

fun3

0012

14 12

im4:1

00002

11 8

im11

12

7

opcode

110 00112

6 0

(c) Consider the four-instruction sequence from the code above:

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

Re-write this sequence in RISC-V RV32I, and take advantage of RISC-V branch behavior to reduce this
to three instructions (plus possibly one more instruction before the loop). For this problem one needs to
focus on RISC-V branch behavior. Assume that the RISC-V slti and addi instructions are identical to
their MIPS counterparts at the assembly language level. It is okay to retain the MIPS register names. Hint:
One change needs to be made for correctness, another for efficiency.

Solution appears below. Before the loop is entered the addi instruction sets t6 to 10, a constant that will come in handy.

Inside the loop the four MIPS instructions are replaced by three RISC-V instructions. First, the slti is no longer necessary because

RISC-V has a blt (branch less than). The blt itself checks whether t0 is less than 10 (which is in t6). Using the blt to do the

comparison is the efficiency change mentioned in the hint. Because RISC-V lacks delay slots the addi t2,t0,48 had to be moved

before the blt. That’s the correctness change mentioned in the hint. Notice that RISC-V has register names that are similar to

MIPS, such as t0-t6 for caller-save (temporary) registers.

# Instruction inserted before the loop to put 10 into register t6.

addi t6, zero, 10

LOOP:

# These instructions replace the four MIPS instructions.

addi t2, t0, 48 # Convert assuming t0 in range 0-9 ..

blt t0, t6, SKIP # .. if that’s correct, branch ..

addi t2, t0, 87 # .. otherwise convert assuming a-f.

SKIP:
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Problem 2: Note: The following problem was assigned in each of the last six years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.
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(a) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches

WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

(b) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because the lw writes r1, it does not read r1.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB
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(c) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

(d) Explain error and show correct execution.

# Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct. But, the stall

starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1, or for that matter that

it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

# Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB
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