Staple This Side

Staple This Side

Name Partial Solution

Formatted For 2-Sided Printing

Computer Architecture

Final Examination

Monday, 8 May 2023 10:00-12:00 CDT

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5

Exam Total

Good Luck! Thank you for your effort in EE 4720!

https://www.ece.lsu.edu/ee4720/

Problem 1: (25 pts) Show the execution of the code fragments on the following implementations. In each
case the branch is taken.

(@) Show the execution on this basic MIPS implementation.

IF ID EX ME WB
\;D NPC NPC ALU
+1 2521 [Addr Data}—{rsv Mem
T 2026 [A yir Data bl v L AU | Port
—— | HAddr
— Addr Din D Y H IV
> PC rtv —In Out
b0 15:0{format | |
30412 immed MM :Ei e L
Addr
Mem (Decode)
dst dst dst |
Port patal | o | \ dest. reg)
Out

M Show execution for the case where the branch is taken. @(Check for dependencies. @(Base execution on
hardware shown. Pay close attention to branch behavior.

Tha solution appears balow. To help in understanding the solution registers carrying dependencies that result in stalls are shown in
uppercase and bold, Tor example as R5 instead of r5.

Notice that in this implementation there are no DYPass paths, whieh is why ALU-10-ALU dependencies (SUQY\ as hetween s11 and
add) are two cyeles. 1t this does not make sense then please please please study more carefully and ask for help if you don't get it!

Algo notice that we can tell that the braneh resolves in ME because 4 connection to the multiplexor in the IF stage comes from the
ME stage. Because the braneh resolves in ME the target will be tatehed in the next eycle, when the braneh is in WB, which is cycle 9
in the example below. (\ﬂ most Nve-stage MIPS implementations used in clags the branch resolved in ID.)

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
addi r6, r6, 1 IF ID EX ME WB

lui RS, £00d IF ID EX ME WB

1w R3, 81b4 (r5) IF ID ----> EX ME WB

bne r1, r2, TARG IF --—--> ID EX ME WB

or r8, R3, 16 IF ID -> EX ME WB

sw r8, 8120(r5) IF ->x

1w 3, 8200(r5)
addi r5, r5, 16

TARG:

sll r10, r3, 8 IF ID EX ME WB

add ri1l, R10, ril2 IF ID -——-> EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Staple This Side

Staple This Side

aprs swy, a1dig
aps sy, a1dig

(b) Appearing below is a MIPS implementation and an incorrect execution of a code fragment on that imple-
mentation. The code executes more slowly than it would on the implementation. Modify the implementation
so that the execution is correct. Your modifications will reduce the cost of the implementation.

29:26

IF D [=F EX ME WB
E - NPC ALU
1 25:21 liaf
+1 Addr Data rsv f——~ Mem
A 20:16 Iaddr Data vl | ALl | Port
o HAddr
Addr Dn X D o vpo
> PC Eu rtv—In Out %
| 0 1/
2'60 15:0({format
30+ +2 immed IMMP-
msb = Isb
Addr
Mem (Decode)
dst dst dst
Port Data N dest. reg)
Out

M Modify the implementation above so that the code below executes as shown.

M Make as few changes as possible. For example, remove a bypass path from a mux input, rather than the

entire bypass path.

Cycle 01 2 3 4 5 6 7 8 9 10
addi r6, r6, 1 IF ID EX ME WB

lui R5, f00d IF ID EX ME WB

lw R3, 81b4 (r5) IF ID -> EX ME WB

bne rl, r2, TARG IF -> ID EX ME WB

or r8, r6, R3 IF ID -> EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 10

Solution shown above in red in the EX stage. The crossed out input on the upper mux is for the bypass from ME that would have
provided the value of RS needed by the 1w. The crossed out lower mux input would have been used by the or instruction to Dypass
the in WB from the 1w instruction.

Staple This Side

Staple This Side

(c) Appearing below is a 4-way superscalar MIPS implementation.

This Side

Staple

e

Addr

Mem
Port

Data
Out

. 0
Ir

&
+Eir3

ID

EX

ME

Register File alu®
LN
Addr Data |—]rsv® H [Mem
Addr Data |—{rtv® |— T 0 Port
. .) |~ — alu® |
o : 1 H L{Addr
25:21
P Addr Data |—]Jrsv3 my D Data
/ Addr Data |—{rtv® |+ 0 n out| | m:d
%oy . ~ ° 3
% < . % < N g alu
<0 < L H | | ° Mem
. [— T = a2l | Port
- : Immed imm0 ™H | L Addr
150 ° ———— g ‘ mEly D Data 3
Immed imm |
/| 4gi I— rtv3 In Out md
s Dest.reg) d§t0 f . d§t qsto m
: {Dest.reg) CISE3 : : dS'E dSBt3

D Show execution on the 4-way superscalar implementation D with branch taken.

[] Pay attention to [] branch behavior and [] the order of instructions within a stage.

addi 6,

lui s

1w ,

bne ,

or s

swW s

TARG:

sll s

add s

Staple This Side

£00d

81b4 (

, TARG

8120¢(

)

)

Problem 2: (25 pts) The implementation of ANRI, a new RISC ISA, appears below. Many instructions
are similar to those of MIPS, though they differ in format and other features. Like MIPS, ANRI registers

are named r0, rl, ...

ID =EF OEX ME WB

NPC —L* ALU
Addr Dataj{rs1v — Mem
A 116 Jaddr Datalrs2vl |14 ALV | Port
hagr 01 N
r n I D D MD
> PC I— rs2vi—{In Out
0 25:16 . : ~
2b orma
304 +2 11:0 |immed IMMI—
msb Isb
Addr () Used only for lui.
Mem 31:26 67"’1] dst dst dst |
Port pata "
Out > > > >

(a) First, an easy question:

M How does ANRI differ from MIPS in the Mnumber of registers and Mthe immediate size?

Full-Credit Answer: ANRI has 64 registers, while MIPS has 32, and the ANRI immediate size is 10 bits while MIPS' 18 16 bits.

Ezplanation: The number of registers (integer [general-purpose| registers 1o be exact) is determined by 100king at the number of
DIts used as an address in the ports of the register Nl (in the ID stage). The width of each of the Addr inputs is 6 bits, and o the
number of registers is 26 = 64. The size of the immediate can be determined by looking at the number of bits at the input 1o the
original (black in the diagram) format immed unit in ID, that's 10 bits. (The input labeled () is part of the solution to part ().)

(b) Like MIPS, ANRI’s Format R is used for three-register instructions such as add r1, r2, r3. Show a
possible ANRI Format R consistent with the hardware.

M Show the bit positions and the name of each field in ANRI Format R based on reasonable guesses.

M Show possible field values for add r1, r2, r3 and for or r1, r2, r3. (Two instructions for a reason.)
Solution:
rd OPR OPQ rs2 rsi
ANRI R: | 1] 1(adq)] 0] 2] 3] add r1, r2, r3
31 26 25 16 15 12 11 6 5 0
ANRI R: | 1 2(on)] 0] 2] 3 or rt, r2, r3
31 26 25 16 15 12 11 6 5 0

Staple This Side

Staple This Side

Staple This Side

Staple This Side

Ezplanation: The position of the rs1 and rs2 nelds can be determined by looking at the read-port Addr inputs of the register
file ('m the ID S{&g@). Similarly, the rd neld can be determined Dy looking at the bits, 31:26, that travel through the pipeline dst
latenes on their way to the register file write Addr port.

The position of the opcode Tield needs To be inferred. The opeode Tield Must appear in the same place in every instruction. Bits
25:16 are used for the immediate, and so they can't be used for the opcode field. The only remaining bits are 15: 12, and 50 those
must be the location of the opeode field. A 4-dit opcode nield, with only 16 distinet values, is not enough to encode every instruction.
S0 like MIPS an opeode extension field will be needed, that's called opR (OPQOGQ axtension for format R) here. Also like MIPS, the
opeode Teld is set 10 zero for type-R integer instructions. Values of 1 and 2 in the opR feld are used Tor add and or Instructions.

Note. MIPS uses field names opcode, rs, rt, rd, sa, func, immed, ii. There isno reason to use exactly the same
names in ANRI. Most ISAS use rd for a destination and opcode for the OPQOGQ, 80 that's retained in this solution. But MIPS
ammguous\y named rt does not Qpp\y because rd is &\\N&yS 9 destination and the two sources are a\ways sourees (W used at &\\)‘
For that reason, the sources were named rsi and rs2 (\chh IS how many other ISAs name SOUYQQS). M&ﬂy ISAS use an immediate
fleld to SPQQ\Ty 9 constant shift amount, MIPS 18 an QXQQPUOT\ USH’\g 9 dedicated sa feld. Given that no shift unit was shown there
Was no reason to QXpQQI 9 dedicated shift amount field.

(c) Like MIPS, ANRI’s Format I is used for immediate instructions such as addi r4, r5, 6. Assume that
like MIPS, each of the dozens of ANRI arithmetic and logical instructions has an immediate variant.

M Shogw the bit position and name of eagh instruction field in ANRI Format I based on reasopable guesses and

heeding the bold text above. Show possible field values for addi r4, r5, 6 and for ori r4,
r5, 6.
Solution:
rd imm ope opl 11
ANRI 1| A 6] 1 1 (addy)] 5| addi r4, r5, 6
31 26 25 16 15 12 11 6 5 0
ANRI I | A 6] 1] 2 (or)]| 5| ori r4, r5, 6
31 26 25 16 15 12 11 65 0

Ezplanation: The type 1 instruction uses an imm nNeld, whose position is determined by the input 1o the format immed unit in
ID. Because there are dozens of type | instructions (see the bold text) the 4-bit opeode field will not be summcient to code them
all. For thaf reason bits 11:6 are used as an opcode extension fleld, called opI, oceupying the sama position as rs2, which is not
used in type-1 instructions.

(d) Consider load and store instructions.

M Show encoding of 1w r7, 8(r9) and Msw r10, 12(r11) in ANRI Format I, or something similar. Don’t

forget to base the encoding on the hardware.
solution:
rd imm ope opl sl
ANRI 1 | 7] 8] 1 3w o 1w r7, 8(x9)
31 26 25 16 15 12 11 65 0
opS imm ope) sl
ANRI I | 2 (sw) 12] 2] 10] 1] sy r10, 12(r11)
31 26 25 16 15 12 11 65 0

Ezplanation: The 1w is encoded the same way as the other type | ANRI instructions. However, that approach won't work for sw
because the rs2 fleld is neaded for the register holding the value to be written to memory (r10 in the example). Therefore for store
instructions bits 31:26 are used for an opeode extension field, called opS here.

(e) Consider procedure call instructions.

M Based on the implementation, why does it appear that ANRI would lack the equivalent of MIPS jal Some-
Procedure though it could still encode the equivalent of jalr ri, r2.

Full-Credit Answer: Because the only inputs 1o the dst mux are zero and rd, so there is no way to encode an implicit destination
register sueh as r31.

Ezxplanation: The MIPS jal instruction writes the return address in r31. The instruction has only an opeode and an immediate
Tield, the 31 i3 not encoded. The ID-stage mux selecting the writeback register (dst) Nas only two inputs, & zero or the rd neld.
Tharefore every instruction in ANRI that writes o register must use the rd fleld to specity the destination register, explicitly. That
makes it impossible 1o have an implicit register such as r31 in MIPS. (N()IQ that rO must De the zero register because the register
file lacks a write-enable 'mput.)

Grading Note: Many solutions to 2024 Homework 2, based on this problem, incorrectly answered that there was no way for an
ANRI jal to write a return address into a register. The return address in MIPS is PC + 8 (the same as NPC+4). If that were the
case for ANRI, then a return address could easily be saved by having the ALU add 4 (or maybe 1) to the NPC value available in the
upper input.

(f) Based on the hardware above, ANRI would lack a means of loading an arbitrary 32-bit constant into a
register using two instructions. Modify the hardware so that ANRI could encode an instruction like MIPS
lui, one that could be used to load an arbitrary 32-bit constant into a register using two instructions.

M Modify hardware to implement an instruction to help loading a 32-bit constant.

M Show the format and encoding of this new instruction. @rThe format must fit in as much as possible with
existing formats.

The encoding appears below and the hardware modifications appear in the diagram in blue. The format is called type U, following
RISC-V terminology. Since & lui instruction does not need source registers the rs1 and rs2 Telds are used Tor an immediate
extension feld, called imxii here. With the 10-Dit imm field and the 12-bit imxii fleld the ANRI 1ui can accommodate 22-bit
immediates. That is sufMeient to load an arbitrary 32-bit contents using the instruction pair lui r1, hi(0x12345678);
ori rl, ri, 1lo(0x12345678);, where assembler macros hi and Lo extract the high 22 bits and low 10 bits of their
arguments. Because ordinary type-1 instructions use imm for their entire immadiate it would be more emeient hardware-wise 1o use
imm for the least-significant 10 bits of the immediate in lui instructions and imxii for the remaining 12 bits. In this example
hi(0x12345678) evaluates 10 0x048d15 or 00 0100 1000 1101 0001 01015. So the imm field would be set To the lower ten
bits, 01 0001 01015 = 11576. The imxii would be set to the high 12 bits, 0001 0010 0011y = 12346.

rd imm ope imxit

ANRI U: | 2] O0xii5] 2 X123] 1ui r12, 0x48d15
31 2% 25 16 15 1211 0

Staple This Side

Staple This Side

aprs swy, a1dig
aps sy, a1dig

Problem 3: (20 pts) In the incomplete MIPS implementation to the right the FP multiply unit has its own
write port to the FP register file, shown in blue and labeled WM in several places. Because of this new MW
port the sub.s instruction in the execution below does not stall, both the sub.s and mul.s can write back
in cycle 8. The control logic has not yet been updated for Mw.

Cycle 0O 1 2 3 4 5 6 7 8 9

mul.s f1, f2, £f3 IF ID M1 M2 M3 M4 M5 M6 WM # Uses MW, the mult-only write port.
add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

sub.s f7, £8, f9 IF ID A1 A2 A3 A4 WF # No stall!

lwcl £10, 0(ri1) IF ID ----> EX ME WF # Stall due to WF str hazard.

add.s f12, f1, f14 IF ----> ID -> Al... # Stall due to dep with mul.s

(a) With the illustrated hardware a result cannot be bypassed from a mul.s to another instruction. The last
add. s suffers a stall because of that. Add bypass hardware for such cases.

Add the bypass hardware. E] Try to keep cost down by using one mux.

(b) Modify the control logic so that it no longer stalls instructions that would write back through WF at the
same time as a preceding mul.s. Hint: This is just a matter of crossing things out.

Modify logic to eliminate stalls due to mul.s E] but retain stalls for instructions contending for WF, such
as lwcl in execution above.

(¢) Provide the correct Addr and WE signals to the WM and WF ports of the FP register file. Note that the WF
ports are connected, but based on the original version. The WM port wires are shown unconnected on the
lower-left of the diagram.

D Add hardware for the MW Addr and WE signals, D and make changes to the WF Addr and WE signals.

D Cross out unneeded hardware and D simplify remaining hardware where possible.

Attention perfectionists: Get the SVG source for the hardware at
https://www.ece.lsu.edu/ee4720/2023/fe-ill-fp-2wr.svg and edit it yourself!

10

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4720/2023/fe-ill-fp-2wr.svg

29:0

CIF all B ID -~ EX ME WB
H NPC NPC
3 Int Reg File T - ALU
25:21
+1 Addr Data rsv Mem
A 2016 faddr Data rtvih | AL [Port
— HAddr
>
rev F—iIn
| } Out 4,
10 150 format vl
m358:-yizlsb immed
Addr
Mem ‘ ggtocr'gg ‘ dst dst dst |
Port —~
Data
Out — o — — F
FP Reg File A1 a2] LAs|] []AsH
1510 Addr Data | fsv j} = e B 11 11 :
7 L 1
: T FHoo-H1 B [: .1 Ho=H1 H =
2076 Y addr Data | ftv ,:[}_M1w [[M2] |) M3 L (MAL M Ve s 1 m
WF =
Addr
WE
WM Addr U © 242
WE — Z’dﬂ xw w 240 XW XW XW
25 e {o S
dcd fd fd *ji::>?
dst ’Df:* fd fd (D»% fd fd fd _‘
uses FP mul

uses FP add

*:D—l—Di Stall
ID

I

FP load

Addr

Staple This Side

11

Problem 4: (10 pts) The diagram below is for a 4 MiB two-way set-associative cache with a line size of
128 B. The character size is the usual 8 bits. Helpful facts: 4 MiB = 222 B, 128 = 27.

(a) Answer the following, formulee are fine as long as they consist of grade-time constants.

D Fill in the blanks in the diagram.

CPU
Data In

Addr
cee ? ' 32 ' logic

Staple This Side

Tag D] Tag D]
Addr Addr
Data | 29 Data | ('29
Out Out
Valid Valid
Data Data
Addr Addr
Data Data
Out Out

D Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address: ‘

12

Staple This Side

Staple This Side

Staple This Side

The code in the problem belows run on a cache with a line size of 128 B (which is 27 B). The code fragment
starts with the cache cold (empty); consider only accesses to the array.

(b) Find the hit ratio executing the code below.
float sum = 0;
bfloatl16_t *a = 0x2000000; // sizeof(bfloatl6_t) ==
int ILIMIT = 1 << 11; // = 21

for (int i=0; i<ILIMIT; i++) sum += al[i];

[] What is the hit ratio running the code above? Show formula and briefly justify.

13

Problem 5: (20 pts) Answer each question below.

(a) How does the ARM A64 fcvtzs instruction differ from MIPS trunc.w.s instruction? These were the
instructions used in sum_thing_unusual from Homework 5.

D The difference between fcvtzs and trunc.w.s is:

(b) With the SPEC CPU benchmarks it is the testers responsibility to compile and run the benchmarks.

D A brand-new implementation has many more bypass paths than the old implementation. Why might the
results of a tester-compiles test (like SPEC CPU) show better performance on the new implementation than
on the old implementation, while with a pre-compiled test the old and new implementations would show the
same performance?

14

Staple This Side

Staple This Side

Staple This Side

Staple This Side

(c) Appearing below are some hypothetical CISC instructions.

Some Hypothetical CISC Instructions

I1: add ri1, r2, 12345678 #rl =12+ 12345678

I2: add (r1), r2, 1234 # Mem[rl] = r2 + 1234

I3: add (r1), ££f04(r2), 1234 # Mem[r1] = Mem[r2+0xff04] + 1234
I4: add r1, (r2), 8(r3) # rl = Mem[r2] + Mem[r3+8]

I5: add (r1), r2, ((3)) # Mem[r1l] = r2 + Mem[Mem[r3] 1]

I:] Which of these instructions could not easily be included in an ISA with 32-bit fixed-length instructions?
D Explain.

D Which of these instructions would be difficult to implement in a pipelined implementation, even if IF and
ID could easily handle variable-length instructions? I:] Explain.

(d) Consider a 4-way superscalar implementation of a conventional ISA, like MIPS, that has just one memory
port in the ME stage. Also consider Hy4 VI, a hypothetical 4-slot VLIW ISA in which only slot 1 can contain

a load or store instruction.

D Why might the memory port and related hardware in the ME stage of a Hy4VI implementation cost less than
that hardware in the ME stage in the 4-way RISC implementation?

I:] Why might code written in the conventional ISA enjoy an advantage over code in Hy4VI when running on
respective future implementations even when the performance of that code is the same on current imple-
mentations? The reason given E] must have something to do with load and store instructions.

15

