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Problem 1: (25 pts) Show the execution of the code fragments on the following implementations. In each
case the branch is taken.

(a) Show the execution on this basic MIPS implementation.
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� Show execution for the case where the branch is taken. �Check for dependencies. �Base execution on
hardware shown. �Pay close attention to branch behavior.

The solution appears below. To help in understanding the solution registers carrying dependencies that result in stalls are shown in

uppercase and bold, for example as R5 instead of r5.

Notice that in this implementation there are no bypass paths, which is why ALU-to-ALU dependencies (such as between sll and

add) are two cycles. If this does not make sense then please please please study more carefully and ask for help if you don’t get it!

Also notice that we can tell that the branch resolves in ME because a connection to the multiplexor in the IF stage comes from the

ME stage. Because the branch resolves in ME the target will be fetched in the next cycle, when the branch is in WB, which is cycle 9

in the example below. (In most five-stage MIPS implementations used in class the branch resolved in ID.)

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r6, r6, 1 IF ID EX ME WB

lui R5, 0xf00d IF ID EX ME WB

lw R3, 0x81b4(R5) IF ID ----> EX ME WB

bne r1, r2, TARG IF ----> ID EX ME WB

or r8, R3, r6 IF ID -> EX ME WB

sw r8, 0x8120(r5) IF ->x

lw r3, 0x8200(r5)

addi r5, r5, 16

TARG:

sll R10, r3, 8 IF ID EX ME WB

add r11, R10, r12 IF ID ----> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e



S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3



(b) Appearing below is a MIPS implementation and an incorrect execution of a code fragment on that imple-
mentation. The code executes more slowly than it would on the implementation. Modify the implementation
so that the execution is correct. Your modifications will reduce the cost of the implementation.

format
immed
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�Modify the implementation above so that the code below executes as shown.

�Make as few changes as possible. For example, remove a bypass path from a mux input, rather than the
entire bypass path.

# Cycle 0 1 2 3 4 5 6 7 8 9 10

addi r6, r6, 1 IF ID EX ME WB

lui R5, 0xf00d IF ID EX ME WB

lw R3, 0x81b4(R5) IF ID -> EX ME WB

bne r1, r2, TARG IF -> ID EX ME WB

or r8, r6, R3 IF ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10

Solution shown above in red in the EX stage. The crossed out input on the upper mux is for the bypass from ME that would have

provided the value of R5 needed by the lw. The crossed out lower mux input would have been used by the or instruction to bypass

the in WB from the lw instruction.
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(c) Appearing below is a 4-way superscalar MIPS implementation.

Immed

IF ID EX WBME

Ad
dr

D
 In

+16

Mem
Port

Addr

Addr

Mem
Port

md0

dst0Dest. reg

Addr25:21

20:16
rsv0

rtv0Addr
Data
Data

+
31:2

15:0

alu0

rtv0

 

rtv3

Addr25:21

20:16
rsv3

rtv3Addr
Data
Data

Ad
dr

D
 In

dst3

imm0

imm3

12
8

15:0

alu3  
Addr

Mem
Port

md3

dst0

dst3

Register File

ir0

ir3

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst3

alu3

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic
Cloud

� Show execution on the 4-way superscalar implementation �with branch taken.

�Pay attention to �branch behavior and �the order of instructions within a stage.

Solution appears below. Notice that the branch target, sll, is fetched when the branch is in EX.

Grading Note: A common mistake (in 2024 when this appeared in Homework 5) was to mistake lui for some kind of load.

Remember that lui is the load upper immediate instruction, it puts the immediate into the 16 high bits of the destination register

and zeros the low 16 bits.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9

addi r6, r6, 1 IF ID EX ME WB

lui r5, 0xf00d IF ID EX ME WB

lw r3, 0x81b4(r5) IF ID -> EX ME WB

bne r1, r2, TARG IF ID -> EX ME WB

or r8, r3, r6 IF -> ID -> EX ME WB

sw r8, 0x8120(r5) IF ->x

lw r3, 0x8200(r5) IF ->x

addi r5, r5, 16 IF ->x

# Cycle 0 1 2 3 4 5 6 7 8 9

TARG:

sll r10, r3, 8 IF -> ID EX ME WB

add r11, r10, r12 IF -> ID -> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9
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Problem 2: (25 pts) The implementation of ANRI, a new RISC ISA, appears below. Many instructions
are similar to those of MIPS, though they differ in format and other features. Like MIPS, ANRI registers
are named r0, r1, . . .

format
immed
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(f) Used only for lui.

(a) First, an easy question:

�How does ANRI differ from MIPS in the �number of registers and �the immediate size?

Full-Credit Answer: ANRI has 64 registers, while MIPS has 32, and the ANRI immediate size is 10 bits while MIPS’ is 16 bits.

Explanation: The number of registers (integer [general-purpose] registers to be exact) is determined by looking at the number of

bits used as an address in the ports of the register file (in the ID stage). The width of each of the Addr inputs is 6 bits, and so the

number of registers is 26 = 64. The size of the immediate can be determined by looking at the number of bits at the input to the

original (black in the diagram) format immed unit in ID, that’s 10 bits. (The input labeled (f) is part of the solution to part (f).)

(b) Like MIPS, ANRI’s Format R is used for three-register instructions such as add r1, r2, r3. Show a
possible ANRI Format R consistent with the hardware.

� Show the bit positions and the name of each field in ANRI Format R based on reasonable guesses.

� Show possible field values for add r1, r2, r3 �and for or r1, r2, r3. (Two instructions for a reason.)

Solution:

ANRI R:

rd

1

31 26

opR

1 (add)

25 16

opc

0

15 12

rs2

2

11 6

rs1

3

5 0

add r1, r2, r3

ANRI R: 1

31 26

2 (or)

25 16

0

15 12

2

11 6

3

5 0

or r1, r2, r3
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Explanation: The position of the rs1 and rs2 fields can be determined by looking at the read-port Addr inputs of the register

file (in the ID stage). Similarly, the rd field can be determined by looking at the bits, 31:26, that travel through the pipeline dst

latches on their way to the register file write Addr port.

The position of the opcode field needs to be inferred. The opcode field must appear in the same place in every instruction. Bits

25:16 are used for the immediate, and so they can’t be used for the opcode field. The only remaining bits are 15:12, and so those

must be the location of the opcode field. A 4-bit opcode field, with only 16 distinct values, is not enough to encode every instruction.

So like MIPS an opcode extension field will be needed, that’s called opR (opcode extension for format R) here. Also like MIPS, the

opcode field is set to zero for type-R integer instructions. Values of 1 and 2 in the opR field are used for add and or instructions.

Note: MIPS uses field names opcode, rs, rt, rd, sa, func, immed, ii. There is no reason to use exactly the same

names in ANRI. Most ISAs use rd for a destination and opcode for the opcode, so that’s retained in this solution. But MIPS’

ambiguously named rt does not apply because rd is always a destination and the two sources are always sources (if used at all).

For that reason, the sources were named rs1 and rs2 (which is how many other ISAs name sources). Many ISAs use an immediate

field to specify a constant shift amount, MIPS is an exception using a dedicated sa field. Given that no shift unit was shown there

was no reason to expect a dedicated shift amount field.

(c) Like MIPS, ANRI’s Format I is used for immediate instructions such as addi r4, r5, 6. Assume that
like MIPS, each of the dozens of ANRI arithmetic and logical instructions has an immediate variant.

� Show the bit position and name of each instruction field in ANRI Format I based on reasonable guesses and

�heeding the bold text above. �Show possible field values for addi r4, r5, 6 �and for ori r4,

r5, 6.

Solution:

ANRI I:

rd

4

31 26

imm

6

25 16

opc

1

15 12

opI

1 (addi)

11 6

rs1

5

5 0

addi r4, r5, 6

ANRI I: 4

31 26

6

25 16

1

15 12

2 (ori)

11 6

5

5 0

ori r4, r5, 6

Explanation: The type I instruction uses an imm field, whose position is determined by the input to the format immed unit in

ID. Because there are dozens of type I instructions (see the bold text) the 4-bit opcode field will not be sufficient to code them

all. For that reason bits 11:6 are used as an opcode extension field, called opI, occupying the same position as rs2, which is not

used in type-I instructions.

(d) Consider load and store instructions.

� Show encoding of lw r7, 8(r9) and �sw r10, 12(r11) in ANRI Format I, or something similar. Don’t
forget to �base the encoding on the hardware.

Solution:

ANRI I:

rd

7

31 26

imm

8

25 16

opc

1

15 12

opI

34 (lw)

11 6

rs1

9

5 0

lw r7, 8(r9)

ANRI I:

opS

2 (sw)

31 26

imm

12

25 16

opc

2

15 12

rs2

10

11 6

rs1

11

5 0

sw r10, 12(r11)

Explanation: The lw is encoded the same way as the other type I ANRI instructions. However, that approach won’t work for sw

because the rs2 field is needed for the register holding the value to be written to memory (r10 in the example). Therefore for store

instructions bits 31:26 are used for an opcode extension field, called opS here.
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(e) Consider procedure call instructions.

�Based on the implementation, why does it appear that ANRI would lack the equivalent of MIPS jal Some-

Procedure though it could still encode the equivalent of jalr r1, r2.

Full-Credit Answer: Because the only inputs to the dst mux are zero and rd, so there is no way to encode an implicit destination

register such as r31.

Explanation: The MIPS jal instruction writes the return address in r31. The instruction has only an opcode and an immediate

field, the 31 is not encoded. The ID-stage mux selecting the writeback register (dst) has only two inputs, a zero or the rd field.

Therefore every instruction in ANRI that writes a register must use the rd field to specify the destination register, explicitly. That

makes it impossible to have an implicit register such as r31 in MIPS. (Note that r0 must be the zero register because the register

file lacks a write-enable input.)

Grading Note: Many solutions to 2024 Homework 2, based on this problem, incorrectly answered that there was no way for an

ANRI jal to write a return address into a register. The return address in MIPS is PC + 8 (the same as NPC+4). If that were the

case for ANRI, then a return address could easily be saved by having the ALU add 4 (or maybe 1) to the NPC value available in the

upper input.

(f) Based on the hardware above, ANRI would lack a means of loading an arbitrary 32-bit constant into a
register using two instructions. Modify the hardware so that ANRI could encode an instruction like MIPS
lui, one that could be used to load an arbitrary 32-bit constant into a register using two instructions.

�Modify hardware to implement an instruction to help loading a 32-bit constant.

� Show the format and encoding of this new instruction. �The format must fit in as much as possible with
existing formats.

The encoding appears below and the hardware modifications appear in the diagram in blue. The format is called type U, following

RISC-V terminology. Since a lui instruction does not need source registers the rs1 and rs2 fields are used for an immediate

extension field, called imxii here. With the 10-bit imm field and the 12-bit imxii field the ANRI lui can accommodate 22-bit

immediates. That is sufficient to load an arbitrary 32-bit contents using the instruction pair lui r1, hi(0x12345678);

ori r1, ri, lo(0x12345678);, where assembler macros hi and lo extract the high 22 bits and low 10 bits of their

arguments. Because ordinary type-I instructions use imm for their entire immediate it would be more efficient hardware-wise to use

imm for the least-significant 10 bits of the immediate in lui instructions and imxii for the remaining 12 bits. In this example

hi(0x12345678) evaluates to 0x048d15 or 00 0100 1000 1101 0001 01012. So the imm field would be set to the lower ten

bits, 01 0001 01012 = 11516. The imxii would be set to the high 12 bits, 0001 0010 00112 = 12316.

ANRI U:

rd

12

31 26

imm

0x115

25 16

opc

2

15 12

imxii

0x123

11 0

lui r12, 0x48d15
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Problem 3: (20 pts) In the incomplete MIPS implementation to the right the FP multiply unit has its own
write port to the FP register file, shown in blue and labeled WM in several places. Because of this new MW

port the sub.s instruction in the execution below does not stall, both the sub.s and mul.s can write back
in cycle 8. The control logic has not yet been updated for MW.

# Cycle 0 1 2 3 4 5 6 7 8 9

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WM # Uses MW, the mult-only write port.

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

sub.s f7, f8, f9 IF ID A1 A2 A3 A4 WF # No stall!

lwc1 f10, 0(r11) IF ID ----> EX ME WF # Stall due to WF str hazard.

add.s f12, f1, f14 IF ----> ID -> A1... # Stall due to dep with mul.s

(a) With the illustrated hardware a result cannot be bypassed from a mul.s to another instruction. The last
add.s suffers a stall because of that. Add bypass hardware for such cases.

�Add the bypass hardware. �Try to keep cost down by using one mux.

Solution appears in green. Notice that the bypass can either be from the multiply unit or the value headed to WF, but not both.

Because of this stalls are still possible, which might be the topic of a followup question in 2024.

(b) Modify the control logic so that it no longer stalls instructions that would write back through WF at the
same time as a preceding mul.s. Hint: This is just a matter of crossing things out.

�Modify logic to eliminate stalls due to mul.s �but retain stalls for instructions contending for WF, such
as lwc1 in execution above.

Gates shown crossed out with red exes. The exed-out gates checked for an instruction in M2 to avoid a structural hazard on WF. The

only instruction that can be in M2 is a multiply, and that now uses its own write port, so there is no need to check.

(c) Provide the correct Addr and WE signals to the WM and WF ports of the FP register file. Note that the WF

ports are connected, but based on the original version. The WM port wires are shown unconnected on the
lower-left of the diagram.

�Add hardware for the MW Addr and WE signals, �and make changes to the WF Addr and WE signals.

Solution appears in orange. Because the multiply is the only instruction that uses the WM port, multiply-only pipeline latches are

provided for the write-enable and destination register signals. The multiply’s write-enable signals are labeled w2 and the multiply’s

destination register signals are labeled f2.

�Cross out unneeded hardware and �simplify remaining hardware where possible.

Because a multiply has its own write-enable and destination register pipeline latches, there is no need for the fd multiplexor, the xw

multiplexor, and OR gate in the M2 stage. Also notice that the xw signal can be made 1 bit since the WF mux now has two inputs.
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Problem 4: (10 pts) The diagram below is for a 4 MiB two-way set-associative cache with a line size of
128 B. The character size is the usual 8 bits. Helpful facts: 4 MiB = 222 B, 128 = 27.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

� Fill in the blanks in the diagram.

Solution appears below.

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

8 B

32

31:21

20:3

31:21

20:7 20:7

20:3

�Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

31 21

Index

20 7

Offset

6 3 2 0
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The code in the problem belows run on a cache with a line size of 128 B (which is 27 B). The code fragment
starts with the cache cold (empty); consider only accesses to the array.

(b) Find the hit ratio executing the code below.

float sum = 0;

bfloat16_t *a = 0x2000000; // sizeof(bfloat16_t) == 2

int ILIMIT = 1 << 11; // = 211

for ( int i=0; i<ILIMIT; i++ ) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 27 = 128 bytes is given. The size of an array element, which is of type bfloat16 t (a 16-bit floating point type

called brain float), is 2 = 21 B, and so there are 27/21 = 27−1 = 26 = 64 elements per line. The first access, at i=0, will

miss but bring in a line with 26 elements, and so the next 26 − 1 = 63 accesses will be to data on the line, hits. The access at

i=64 will miss and the process will repeat. Therefore the hit ratio is 63
64 .
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Problem 5: (20 pts) Answer each question below.

(a) How does the ARM A64 fcvtzs instruction differ from MIPS trunc.w.s instruction? These were the
instructions used in sum_thing_unusual from Homework 5.

�The difference between fcvtzs and trunc.w.s is:

Full-Credit Short Answer: Both read a FP register and convert the truncated FP value to an integer, the result is written to

an integer register by fcvtzs and to a FP register by trunc.w.s.

Long Answer: Both instructions read a floating-point value from a floating-point register, truncate the value, and convert it from

a floating-point representation to an integer representation. (Truncating a floating-point value means discarding the fractional part.

For example, truncating 2.1 yields 2 and truncating −3.9 yields −3. The representation before and after truncation is floating

point, which is way conversion to an integer representation is specifically mentioned above as something each instruction does. So

that both 2.1 and 2.9 are converted to 2. Or, put another way, both 0x40066666 and 0x4039999a are converted to 0x2.) The

ARM A64 fcvtzs writes the result to an integer register. In contrast, the MIPS trunc.w.s writes its result to a floating-point

register (even though the result is in an integer representation). If the converted value is to be used by an integer instruction the

MIPS trunc.w.s needs to be followed by a mfc1 (move from co-processor 1) instruction.

(b) With the SPEC CPU benchmarks it is the testers responsibility to compile and run the benchmarks.

�A brand-new implementation has many more bypass paths than the old implementation. Why might the
results of a tester-compiles test (like SPEC CPU) show better performance on the new implementation than
on the old implementation, while with a pre-compiled test the old and new implementations would show the
same performance?

Suppose that the only change in the new implementation are the new bypass paths. Further, suppose the compiler used in the

pre-compiled test was targeting the old implementation. (It could not target the brand new implementation because the compiler

would not have been available or if it were, it would make no sense to have compiled the code for an implementation that was not yet

available.) Consider an instruction pair that could make use of the new bypass path. To avoid a stall, the compiler would separate

those two instructions. Suppose the compiler separates every pair of instructions that would otherwise use the new bypass paths.

Then the code would run at the same rate on both processors. The bypass paths would go unused.

If the code were compiled for the new implementation there would be no reason to separate instruction pairs that could use the bypass

paths. Such code would suffer stalls on the old implementation that would not occur on the new implementation.
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(c) Appearing below are some hypothetical CISC instructions.

# Some Hypothetical CISC Instructions

I1: add r1, r2, 0x12345678 # r1 = r2 + 0x12345678

I2: add (r1), r2, 0x1234 # Mem[r1] = r2 + 0x1234

I3: add (r1), 0xff04(r2), 0x1234 # Mem[r1] = Mem[r2+0xff04] + 0x1234

I4: add r1, (r2), 8(r3) # r1 = Mem[r2] + Mem[r3+8]

I5: add (r1), r2, ((r3)) # Mem[r1] = r2 + Mem[ Mem[r3] ]

�Which of these instructions could not easily be included in an ISA with 32-bit fixed-length instructions?�Explain.

Instructions I1 and I3, because the total size of the immediate(s) in each instruction would be 32 bits, leaving no room for anything

else.

�Which of these instructions would be difficult to implement in a pipelined implementation, even if IF and
ID could easily handle variable-length instructions? �Explain.

Short, Full-Credit Answer: Instructions I3, I4, and I5 because they each require more than one memory access. A pipelined

implementation would need multiple memory ports, which would be costly.

Explanation: A typical scalar RISC pipeline has one memory port for data access, using our notation, in the ME stage. To

implement these three instructions in a pipelined fashion there would need to be multiple memory ports, inflating the cost by a

substantial amount. For example, to implement I4 two memory ports would be needed to read the sources. Those could be in the

same stage, but for I5 they would need to be in separate stages, one to read Mem[r3] and one to read Mem[ Mem[r3] ], and

finally one to write the result to memory. It is possible to implement I3-I5 with one data memory port by using the port multiple

times per instruction. But such an implementation would not be considered pipelined by most people.

What about I2? That could be implemented by our 5-stage pipeline. RISC ISAs lack such an instruction because they would be more

difficult to compile code for. Difficult because sources would still have to come exclusively from registers, so dependent instructions

would need to have a companion load to get the value that was written to memory.

(d) Consider a 4-way superscalar implementation of a conventional ISA, like MIPS, that has just one memory
port in the ME stage. Also consider Hy4VI, a hypothetical 4-slot VLIW ISA in which only slot 1 can contain
a load or store instruction.

�Why might the memory port and related hardware in the ME stage of a Hy4VI implementation cost less than
that hardware in the ME stage in the 4-way RISC implementation?

In the superscalar implementation the memory port would need to connect to each of the four slots in the ME stage. The multiplexors

to make that connection aren’t free. In Hy4VI the memory port only connects to slot 1, avoiding the multiplexors.

�Why might code written in the conventional ISA enjoy an advantage over code in Hy4VI when running on
respective future implementations even when the performance of that code is the same on current imple-
mentations? The reason given �must have something to do with load and store instructions.

Because sometimes code has lots of loads and stores. In a conventional ISA there’s no problem with, say, eight consecutive load

instructions. But in Hy4VI each load instruction would have to be accompanied by three non-load instructions. If no such useful

instructions could be found those non-load instructions would be no-ops. In the current one-memory port superscalar implementation

there would be stalls to limit one load at a time entering ME, and so it would have no advantage over Hy4VI. But a future superscalar

implementation might have two memory ports (or even four) in ME, and so there would be fewer or no stalls and thus a performance

advantage over Hy4VI.
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