
Name Formatted For 2-Sided Printing

Computer Architecture

LSU EE 4720

Final Examination

Monday, 8 May 2023 10:00-12:00 CDT

Alias

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck! Thank you for your effort in EE 4720!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/ee4720/

Problem 1: (25 pts) Show the execution of the code fragments on the following implementations. In each
case the branch is taken.

(a) Show the execution on this basic MIPS implementation.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

Show execution for the case where the branch is taken. Check for dependencies. Base execution on
hardware shown. Pay close attention to branch behavior.

addi r6, r6, 1

lui r5, 0xf00d

lw r3, 0x81b4(r5)

bne r1, r2, TARG

or r8, r3, r6

sw r8, 0x8120(r5)

lw r3, 0x8200(r5)

addi r5, r5, 16

TARG:

sll r10, r3, 8

add r11, r10, r12

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

This page left blank to provide extra space for the solution.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

(b) Appearing below is a MIPS implementation and an incorrect execution of a code fragment on that imple-
mentation. The code executes more slowly than it would on the implementation. Modify the implementation
so that the execution is correct. Your modifications will reduce the cost of the implementation.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

0

1

0 1

Modify the implementation above so that the code below executes as shown.

Make as few changes as possible. For example, remove a bypass path from a mux input, rather than the
entire bypass path.

Cycle 0 1 2 3 4 5 6 7 8 9 10

addi r6, r6, 1 IF ID EX ME WB

lui r5, 0xf00d IF ID EX ME WB

lw r3, 0x81b4(r5) IF ID -> EX ME WB

bne r1, r2, TARG IF -> ID EX ME WB

or r8, r6, r3 IF ID -> EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(c) Appearing below is a 4-way superscalar MIPS implementation.

Immed

IF ID EX WBME

Ad
dr

D
 In

+16

Mem
Port

Addr

Addr

Mem
Port

md0

dst0Dest. reg

Addr25:21

20:16
rsv0

rtv0Addr
Data
Data

+
31:2

15:0

alu0

rtv0

rtv3

Addr25:21

20:16
rsv3

rtv3Addr
Data
Data

Ad
dr

D
 In

dst3

imm0

imm3

12
8

15:0

alu3
Addr

Mem
Port

md3

dst0

dst3

Register File

ir0

ir3

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst3

alu3

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic
Cloud

Show execution on the 4-way superscalar implementation with branch taken.

Pay attention to branch behavior and the order of instructions within a stage.

addi r6, r6, 1

lui r5, 0xf00d

lw r3, 0x81b4(r5)

bne r1, r2, TARG

or r8, r3, r6

sw r8, 0x8120(r5)

...

TARG:

sll r10, r3, 8

add r11, r10, r12

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

Problem 2: (25 pts) The implementation of ANRI, a new RISC ISA, appears below. Many instructions
are similar to those of MIPS, though they differ in format and other features. Like MIPS, ANRI registers
are named r0, r1, . . .

format
immed

IR

Addr
11:6

5:0

IF ID EX WBME

rs1v

rs2v

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrs2v

ALU

MD

dst

NPC

=

30 2
2'b0

PC

+
31:16

29:0

25:16

D

dstdst

msb lsb

6'b031:26

(a) First, an easy question:

How does ANRI differ from MIPS in the number of registers and the immediate size?

(b) Like MIPS, ANRI’s Format R is used for three-register instructions such as add r1, r2, r3. Show a
possible ANRI Format R consistent with the hardware.

Show the bit positions and the name of each field in ANRI Format R based on reasonable guesses.

Show possible field values for add r1, r2, r3 and for or r1, r2, r3. (Two instructions for a reason.)

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(c) Like MIPS, ANRI’s Format I is used for immediate instructions such as addi r4, r5, 6. Assume that
like MIPS, each of the dozens of ANRI arithmetic and logical instructions has an immediate variant.

Show the bit position and name of each instruction field in ANRI Format I based on reasonable guesses and
heeding the bold text above. Show possible field values for addi r4, r5, 6 and for ori r4,

r5, 6.

(d) Consider load and store instructions.

Show encoding of lw r7, 8(r9) and sw r10, 12(r11) in ANRI Format I, or something similar. Don’t
forget to base the encoding on the hardware.

(e) Consider procedure call instructions.

Based on the implementation, why does it appear that ANRI would lack the equivalent of MIPS jal Some-

Procedure though it could still encode the equivalent of jalr r1, r2.

(f) Based on the hardware above, ANRI would lack a means of loading an arbitrary 32-bit constant into a
register using two instructions. Modify the hardware so that ANRI could encode an instruction like MIPS
lui, one that could be used to load an arbitrary 32-bit constant into a register using two instructions.

Modify hardware to implement an instruction to help loading a 32-bit constant.

Show the format and encoding of this new instruction. The format must fit in as much as possible with
existing formats.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

Problem 3: (20 pts) In the incomplete MIPS implementation to the right the FP multiply unit has its own
write port to the FP register file, shown in blue and labeled WM in several places. Because of this new MW

port the sub.s instruction in the execution below does not stall, both the sub.s and mul.s can write back
in cycle 8. The control logic has not yet been updated for MW.

Cycle 0 1 2 3 4 5 6 7 8 9

mul.s f1, f2, f3 IF ID M1 M2 M3 M4 M5 M6 WM # Uses MW, the mult-only write port.

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

sub.s f7, f8, f9 IF ID A1 A2 A3 A4 WF # No stall!

lwc1 f10, 0(r11) IF ID ----> EX ME WF # Stall due to WF str hazard.

add.s f12, f1, f14 IF ----> ID -> A1... # Stall due to dep with mul.s

(a) With the illustrated hardware a result cannot be bypassed from a mul.s to another instruction. The last
add.s suffers a stall because of that. Add bypass hardware for such cases.

Add the bypass hardware. Try to keep cost down by using one mux.

(b) Modify the control logic so that it no longer stalls instructions that would write back through WF at the
same time as a preceding mul.s. Hint: This is just a matter of crossing things out.

Modify logic to eliminate stalls due to mul.s but retain stalls for instructions contending for WF, such
as lwc1 in execution above.

(c) Provide the correct Addr and WE signals to the WM and WF ports of the FP register file. Note that the WF

ports are connected, but based on the original version. The WM port wires are shown unconnected on the
lower-left of the diagram.

Add hardware for the MW Addr and WE signals, and make changes to the WF Addr and WE signals.

Cross out unneeded hardware and simplify remaining hardware where possible.

Attention perfectionists: Get the SVG source for the hardware at
https://www.ece.lsu.edu/ee4720/2023/fe-ill-fp-2wr.svg and edit it yourself !

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/ee4720/2023/fe-ill-fp-2wr.svg

FP Reg File

fd

WF

Addr Data

D
 In

WE

Addr

Addr

Data
fsv
ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0
1
2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

dcd
dst

WE
Addr

D
 In

W
FW

M

W
M

W
F

WF

WM

WE

Addr

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

Problem 4: (10 pts) The diagram below is for a 4 MiB two-way set-associative cache with a line size of
128 B. The character size is the usual 8 bits. Helpful facts: 4 MiB = 222 B, 128 = 27.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data
Addr

Data
Out

=Tag

Valid

8 B

32

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

The code in the problem belows run on a cache with a line size of 128 B (which is 27 B). The code fragment
starts with the cache cold (empty); consider only accesses to the array.

(b) Find the hit ratio executing the code below.

float sum = 0;

bfloat16_t *a = 0x2000000; // sizeof(bfloat16_t) == 2

int ILIMIT = 1 << 11; // = 211

for (int i=0; i<ILIMIT; i++) sum += a[i];

What is the hit ratio running the code above? Show formula and briefly justify.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

Problem 5: (20 pts) Answer each question below.

(a) How does the ARM A64 fcvtzs instruction differ from MIPS trunc.w.s instruction? These were the
instructions used in sum_thing_unusual from Homework 5.

The difference between fcvtzs and trunc.w.s is:

(b) With the SPEC CPU benchmarks it is the testers responsibility to compile and run the benchmarks.

A brand-new implementation has many more bypass paths than the old implementation. Why might the
results of a tester-compiles test (like SPEC CPU) show better performance on the new implementation than
on the old implementation, while with a pre-compiled test the old and new implementations would show the
same performance?

12 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(c) Appearing below are some hypothetical CISC instructions.

Some Hypothetical CISC Instructions

I1: add r1, r2, 0x12345678 # r1 = r2 + 0x12345678

I2: add (r1), r2, 0x1234 # Mem[r1] = r2 + 0x1234

I3: add (r1), 0xff04(r2), 0x1234 # Mem[r1] = Mem[r2+0xff04] + 0x1234

I4: add r1, (r2), 8(r3) # r1 = Mem[r2] + Mem[r3+8]

I5: add (r1), r2, ((r3)) # Mem[r1] = r2 + Mem[Mem[r3]]

Which of these instructions could not easily be included in an ISA with 32-bit fixed-length instructions?
Explain.

Which of these instructions would be difficult to implement in a pipelined implementation, even if IF and
ID could easily handle variable-length instructions? Explain.

(d) Consider a 4-way superscalar implementation of a conventional ISA, like MIPS, that has just one memory
port in the ME stage. Also consider Hy4VI, a hypothetical 4-slot VLIW ISA in which only slot 1 can contain
a load or store instruction.

Why might the memory port and related hardware in the ME stage of a Hy4VI implementation cost less than
that hardware in the ME stage in the 4-way RISC implementation?

Why might code written in the conventional ISA enjoy an advantage over code in Hy4VI when running on
respective future implementations even when the performance of that code is the same on current imple-
mentations? The reason given must have something to do with load and store instructions.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

13

