
Name Solution

Computer Architecture

LSU EE 4720

Midterm Examination

Wednesday, 30 March 2022 9:30-10:20 CDT

Alias Paper!

Problem 1 (30 pts)

Problem 2 (30 pts)

Problem 3 (40 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: [30 pts] The code fragment below is to execute on the illustrated implementation. Show its
execution and compute the instruction throughput (IPC) for a large number of iterations. (Note: sh is store
half.)

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

1

0

Input 0 used in cycle 6.

Input used
in cycle 3.
(From lw to sh.)

� Show execution of code below.

� Mark each input to the rtv mux (in EX) � and by the branch comparison (blue) mux used by the code
below.

Solution shown above in green. For the branch the value is taken from the register file in cycle 6, using input 0 of the mux. For the

sh the value from WB is used.

� Compute instruction throughput (IPC) for a large number of iterations.

As can be seen in the execution below, the first iteration starts in cycle 0 and the second iteration starts in cycle 7. Each iteration

consists of 5 instructions and so the instruction throughput is 5
7 insn/cycle.

SOLUTION

lw r1, 0(r2)

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB # 1st Iteration

sh r1, -2(r2) IF ID EX ME WB

lw r3, -4(r2) IF ID EX ME WB

bne r3, r1, LOOP IF ID ----> EX ME WB

lw r1, 0(r2) IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addi r2, r2, 4 IF ID EX ME WB # 2nd Iteration

2

Problem 2: [30 pts] Appearing below (and larger on the next page) is a MIPS implementation based
on the solution to Homework 4 Problem 2, in which control logic for a branch bypass was designed. The
diagram includes a Stall signal in the lower right. Add control logic to set the stall signal to 1 when a beq

needs to stall due to a dependence that can’t be bypassed.

Appearing below are some code fragments. Complete executions are shown for the first two, in the others
the executions are incomplete. The control logic should work with these code fragments. It may be helpful
to complete the executions.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

1
0

is beq

='

Stall

is Load

25:21
rs

20:16
rt

='

='='

='

='

='

='

Use next page for solution.

Cycle 0 1 2 3 4 5 6 7 8 Frag A

addi r1, r2, 3 IF ID EX ME WB

beq r1, r4, TARG IF ID -> EX ME WB

nop IF -> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 Frag B

addi r1, r2, 3 IF ID EX ME WB

beq r4, r1, TARG IF ID -----> EX ME WB

nop IF -----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 Frag C

lw r1, 0(r2) IF ID EX ME WB # Execution below part of solution.

beq r1, r4, TARG IF ID -----> EX ME WB

nop IF -----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 Frag D

lw r1, 0(r2) IF ID EX ME WB # Execution below part of solution.

beq r4, r1, TARG IF ID -----> EX ME WB

nop IF -----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 Frag E

lw r9, 0(r2) IF ID EX ME WB # Execution below part of solution.

beq r1, r4, TARG IF ID EX ME WB

nop IF ID EX ME WB

3

� Design control logic to generate the stalls for a beq. Show connections to the input of the OR gate on the

lower right. �Make sure that the logic handles the cases above and for similar situations. �Use as

many or as few comparison units, =’ , as you need.

The solution appears below. The branch can’t bypass anything in EX, and so logic in EX checks for a dependence with the branch rs

or rt sources. Examples of such a stall are Frag A and Frag B in cycle 2. A branch can’t bypass from ME to its rs if the instruction

in ME is a load. An example of such a stall is Frag C in cycle 3. The logic shown in purple checks for this case. This logic needs

to know whether a load instruction is in ME, and it does so using a new ld pipeline latch which carries the output of the is Load

through the pipeline. The branch needs to stall if there is an rt dependence with any instruction in ME. An example is Frag D cycle

3. In all cases the logic checks whether there is a branch in ID. Otherwise the logic would stall non-branch instructions.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

1
0

is beq

='

Stallis Load

25:21
rs

20:16
rt

='

='='

='

='

ld ld

rs or rt dependence with
any insn in EX.
Frag A cyc 2, Frag B cyc 2.

rs dependence with
load insn in ME.
Frag C cyc 3.

rt dep with
any insn in ME.
Frag B cyc 3,
Frag D cyc 3.

4

Problem 3: [40 pts] Answer each question below.

(a) The MIPS code below loads, stores, and loads again. The two sets of tables further below show the
contents of memory before and after the code executes. Numbers in the table are hexadecimal. The code
runs on a big-endian system.

Initially r2 = 0x1200

LOOP:

lw r1, 0(r2)

sb r1, 1(r2)

lw r3, 0(r2)

bne r1, r3, LOOP

addi r2, r2, 4

� Modify the After column so that it shows the contents of memory after the code executes.

Solution appears below, emphasized with→ arrows←.

Before

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

After

Memory Memory

Address Contents

0x1200 0xa0

0x1201 → 0xa3←
0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 → 0xa7←
0x1206 0xa6

0x1207 0xa7

� Modify one row in the Before column below so that the code above executes just one iteration.

Before

Memory Memory

Address Contents

0x1200 0xa0

0x1201 → 0xa3←
0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

After

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

5

(b) Show the encoding of each MIPS instruction below. (That is, show the layout of the 32 bits in the
instruction.) Fill fields with numeric values whenever possible, such as for register numbers and immediate
values. For unknown opcodes and func field values show some kind of name.

� Show encoding of: lw r1, 2(r3).

Solution:

Opcode

2316

31 26

RS

3

25 21

RT

1

20 16

Immed

2

15 0

� Show encoding of: xor r4, r5, r6.

Solution:

Opcode

016

31 26

RS

5

25 21

RT

6

20 16

RD

4

15 11

SA

0

10 6

Function

2616

4 0

� Show encoding of: addi r7, r8, 9.

Solution:

Opcode

816

31 26

RS

8

25 21

RT

7

20 16

Immed

9

15 0

(c) Arm A32 is a 32-bit ISA, Arm A64 (Aarch64) is a 64-bit ISA.

� What does the n in n-bit ISA refer to?

Full-Credit Answer: It refers to the number of bits in a memory address.

Discussion: Memory addresses, of course, are what are used by instructions such as MIPS instruction lw r1,2(r3). For this

instruction the memory address is r3+2. In 32-bit versions of MIPS (including the default MIPS used in classroom examples) that

address is 32 bits. In MIPS64 the address would be 64 bits.

For those that already know the difference between a virtual address and a physical address, the n is the number of bits in a virtual

address.

� Name an application or kind of device for which a 32-bit ISA has an advantage, and � describe the
advantage.

Full-Credit Answer: An embedded processor controlling a simple device, such as a coffee maker. In these devices a less-expensive

32-bit processor makes sense because the processor is a big chunk of the cost and the large address space of a 64-bit processor is not

needed.

� Name an application or kind of device for which a 64-bit ISA is a requirement or a big advantage, and �
describe the requirement/advantage.

One which needs to access more than 232 bytes of data. With 64-bit addresses this can easily be done. Though accessing this much

data using 32-bit addresses is possible, it is extremely tedious.

6

(d) In the statement below the description of how ISAs and implementations are developed is different than
how they are typically developed in accepted practice.

By finalizing an ISA after its implementation is complete it is assured that the ISA exactly describes
the implementation and that the implementation makes the best use of the technology at hand.

� How is this statement of ISA and implementation development different than accepted practice? � What
is the disadvantage of the approach described in the statement (ignoring the “technology at hand” part)?

In accepted practice the ISA is designed first, then implementations are designed. The disadvantage of the approach is that since

each implementation has its own ISA, code compiled for one implementation cannot be run on a different (perhaps newer) one.

� The phrase “makes the best use of the technology at hand” is correct. Explain why accepted practice of ISA
and implementation development may not make the best use of technology. Hint: think about the number
of bits in a register.

The ISA must be followed. This means that one cannot add things, such as wider registers, just because space is available. The

number of bits in a register is specified by the ISA, and that can’t be increased in an implementation just because the area is available

and wider registers would be beneficial.

(e) Answer the following about CISC ISAs.

� What feature of CISC ISAs allow them to have large, say 32-bit, immediate values?

Variable-size instructions.

� Why can’t a RISC ISA like MIPS practically have 32-bit immediates?

Because the instruction size is only 32 bits, and so they would not fit.

7

