
Name

Computer Architecture

LSU EE 4720

Midterm Examination

Wednesday, 30 March 2022 9:30-10:20 CDT

Alias

Problem 1 (30 pts)

Problem 2 (30 pts)

Problem 3 (40 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: [30 pts] The code fragment below is to execute on the illustrated implementation. Show its
execution and compute the instruction throughput (IPC) for a large number of iterations. (Note: sh is store
half.)

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

1
0

Show execution of code below.

Mark each input to the rtv mux (in EX) and by the branch comparison (blue) mux used by the code
below.

Compute instruction throughput (IPC) for a large number of iterations.

lw r1, 0(r2)

LOOP:

addi r2, r2, 4

sh r1, -2(r2)

lw r3, -4(r2)

bne r3, r1, LOOP

lw r1, 0(r2)

2

Problem 2: [30 pts] Appearing below (and larger on the next page) is a MIPS implementation based
on the solution to Homework 4 Problem 2, in which control logic for a branch bypass was designed. The
diagram includes a Stall signal in the lower right. Add control logic to set the stall signal to 1 when a beq

needs to stall due to a dependence that can’t be bypassed.

Appearing below are some code fragments. Complete executions are shown for the first two, in the others
the executions are incomplete. The control logic should work with these code fragments. It may be helpful
to complete the executions.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

1
0

is beq

='

Stall

is Load

25:21
rs

20:16
rt

='

='='

='

='

='

='

Use next page for solution.

Cycle 0 1 2 3 4 5 6 7

addi r1, r2, 3 IF ID EX ME WB

beq r1, r4, TARG IF ID -> EX ME WB

nop IF -> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8

addi r1, r2, 3 IF ID EX ME WB

beq r4, r1, TARG IF ID -----> EX ME WB

nop IF -----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX ME WB # Note: Intentionally incomplete.

beq r1, r4, TARG IF ID

nop IF

Cycle 0 1 2 3 4 5 6 7 8

lw r1, 0(r2) IF ID EX ME WB # Note: Intentionally incomplete.

beq r4, r1, TARG IF ID

nop IF

Cycle 0 1 2 3 4 5 6 7 8

lw r9, 0(r2) IF ID EX ME WB # Note: Intentionally incomplete.

beq r1, r4, TARG IF ID

nop IF

3

Design control logic to generate the stalls for a beq. Show connections to the input of the OR gate on the

lower right. Make sure that the logic handles the cases above and for similar situations. Use as

many or as few comparison units, =’ , as you need.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

1
0

is beq

='

Stall

is Load

25:21
rs

20:16
rt

='

='='

='

='

='

='

4

Problem 3: [40 pts] Answer each question below.

(a) The MIPS code below loads, stores, and loads again. The two sets of tables further below show the
contents of memory before and after the code executes. Numbers in the table are hexadecimal. The code
runs on a big-endian system.

Initially r2 = 0x1200

LOOP:

lw r1, 0(r2)

sb r1, 1(r2)

lw r3, 0(r2)

bne r1, r3, LOOP

addi r2, r2, 4

Modify the After column so that it shows the contents of memory after the code executes.

Before

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

After

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

Modify one row in the Before column below so that the code above executes just one iteration.

Before

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

After

Memory Memory

Address Contents

0x1200 0xa0

0x1201 0xa1

0x1202 0xa2

0x1203 0xa3

0x1204 0xa4

0x1205 0xa5

0x1206 0xa6

0x1207 0xa7

5

(b) Show the encoding of each MIPS instruction below. (That is, show the layout of the 32 bits in the
instruction.) Fill fields with numeric values whenever possible, such as for register numbers and immediate
values. For unknown opcodes and func field values show some kind of name.

Show encoding of: lw r1, 2(r3).

31 0

Show encoding of: xor r4, r5, r6.

31 0

Show encoding of: addi r7, r8, 9.

31 0

(c) Arm A32 is a 32-bit ISA, Arm A64 (Aarch64) is a 64-bit ISA.

What does the n in n-bit ISA refer to?

Name an application or kind of device for which a 32-bit ISA has an advantage, and describe the
advantage.

Name an application or kind of device for which a 64-bit ISA is a requirement or a big advantage, and
describe the requirement/advantage.

6

(d) In the statement below the description of how ISAs and implementations are developed is different than
how they are typically developed in accepted practice.

By finalizing an ISA after its implementation is complete it is assured that the ISA exactly describes
the implementation and that the implementation makes the best use of the technology at hand.

How is this statement of ISA and implementation development different than accepted practice? What
is the disadvantage of the approach described in the statement (ignoring the “technology at hand” part)?

The phrase “makes the best use of the technology at hand” is correct. Explain why accepted practice of ISA
and implementation development may not make the best use of technology. Hint: think about the number
of bits in a register.

(e) Answer the following about CISC ISAs.

What feature of CISC ISAs allow them to have large, say 32-bit, immediate values?

Why can’t a RISC ISA like MIPS practically have 32-bit immediates?

7

