LSU EE 4720 Homework 4 solution

Due: 25 March 2022

Problem 1: Appearing below is our familiar five stage MIPS implementation with a new branch bypass
path shown in blue. For this problem assume that orc.b is executed by the ALU.

ID = EX

lNPC —L
Addr Data{ rsv]

Addr Dataf—] rtv |

— IAddr DIn F:

IMM

immed

(Decode) dst

15:0|format J

ALU

rev —

dst

ME WB
ALU

Mem

Port

Addr

D D ™MD

In Out
dst |+

\ dest.reg)

(a) The code below is based on a solution to Homework 1. Show a pipeline execution diagram of this code
on the illustrated hardware. Pay close attention to the behavior of the branch including behavior due to
dependencies with prior instructions. Show enough of the execution to compute the instruction throughput

in units of IPC.

@ Show execution on the illustrated hardware. @ Compute the instruction throughput (IPC). E{ Pay

attention to dependencies and available bypass paths.

Solution appears below. The only unbypassable dependency was from orc.b to beq. The beq needs the value of t1 when
beq 1S in ID but it cannot be bypassed until orc. b reaches ME (using the blue mux) and so the beq stalls one cycle.

The instruction throughput is | 22— = Sinsn/cycle ‘ Note that the number of eyeles in an iteration is computed by

(6—1) cyc

using the feteh of the Tirst instruction in the loop body, the addi. So the number of cyeles is 6 — 1 = 5.

SOLUTION
1w $t0, 0($a0) IF ID EX ME WB
LOOPB: # Cycle 01 2 3 4 5 6 7 8 9
addi $a0, $a0, 4 IF ID EX ME WB
orc.b $t1, $t0 IF ID EX ME WB
beq $t1, $t3, LOOPB IF ID -> EX ME WB
1w $t0, 0($a0) IF -> ID EX ME WB
LOOPB: # Cycle 01 2 3 4 5 6 7 8 9
addi $a0, $a0, 4 IF ID EX ME
orc.b $t1, $t0 IF ID EX
beq $t1, $t3, LOOPB IF ID
1w $t0, 0(3$a0) IF

10

10
WB
ME
->
->

11

11

WB
EX
ID

12 13
1st

12 13
2nd

ME WB
EX ME

14 15
ITERATION

14 15
ITERATION

WB

https://www.ece.lsu.edu/ee4720/

(b) The code below should have executed more slowly on the illustrated implementation. Explain why. Hint:
The only difference in the code is the branch instruction.

1w $t0, 0($20)
LOOPB:

addi $a0, $a0, 4

orc.b $t1, $tO

beq $t3, $t1, LOOPB

1w $t0, 0($a0)

@ Explain why the code above executes more slowly.

The comparison unit used to evaluate the branch condition (’LhQ E] box in the ID St&g@) Can hypass an rs register value
(though only from ME) DUt NOt an rt value. In both code fragments the beq needs the value of £1 written Dy the orc.b, but in
the code Tragment immediately above t1 18 the beq rt register and so there is no Hypass path.

Problem 2: Appearing below is the implementation used in the previous problem. Add control logic for

the branch condition multiplexor (shown in blue). Feel free to insert an logic block to detect the
presence of a branch based on the instruction opcode. For an Inkscape SVG version of the implementation

The solution appears below in blue. Note thal it was not necessary to check whether the instruction in ID is & braneh because
Oﬂ\y a branen instruction would use that mux. 1t is assumed that logic &\TQ&Gy exists 1o generate 4 stall signal when there is o
C\QPQHC\QI\QQ With the instruction in EX.

ID = Ex ME WB
LJ NPC T— ALU
25:21 —
+1 AddrData rsv Mem
T 20516 | A y4r Data w e T A [Port
—— {Addr
Addr D In i D ol vo
> PC ik rtv —In Out L
7
b0 15:0[{format
30412 immed IMMI—
msb Isb
Addr
Mem (Decode
dst dst dst
Port Data |R \ dest. reg)
Out
25:21 —1
rs

is Branch

https://www.ece.lsu.edu/ee4720/2022/hw04-br-byp.svg

Problem 3: Appearing below is our MIPS implementation (the one we use, we’re not taking credit for
inventing it) with an orc.b unit in the EX stage. Unlike the first problem in this assignment, here the orc.b
instruction is executed by its own unit, not by the ALU. One reason is because orc.b is fairly easy to
compute, and so its output can be available much sooner than the ALU’s output. In fact, it will be available
early enough to be bypassed to ID for use in determining the branch condition.

Connect the orc.b functional unit so that it can be used by orc.b instructions. Paying attention to
cost, connect it so that the following bypasses are possible: (1) A bypass so that an immediately following
dependent branch does not stall. This would eliminate a stall in a solution to Problem 1, and avoid a stall in
Case 1 in the code fragment below. (2) Bypasses to the next two arithmetic/logical instructions. See Case
2 below.

When weighing design alternatives assume that one pipeline latch bit cost twice as much as one mul-
tiplexor bit. Don’t overlook opportunities to reuse existing hardware. The Inkscape SVG source for the

Case 1
orc.b R1, r9
beq rR1, r10, TARG

Case 2

orc.b R1, 19

add r2, rR1, r3 # Bypass from ME
xor r4, R1, r5 # Bypass from WB
or 16, R1, r7 # No bypass needed.

Connect orc.b unit so code above executes without a stall.

Show control logic for any multiplexors added. (Control logic does not need to be shown for the branch
condition mux.)

As always, avoid costly, inefficient, and unclear solutions.

29:26

msb |

ID EX ME WB

NPC —L_ ALU
25:21 l ||
+1 Addr Data+H rsv Mem
T 20116 | n4qr patabld v b [15 Al |Port
—— L—]Addr
Addr DIn H— o pldwo
> PC “— rtv In Out
s
20 15:0|format
30+ 2 immed MM
msb Isb _Jorch [

Addr is orc.b }—

Mem (" Decode)
dst dst dst |
Port Data \dest.reg)

Out

The solution appears on the next page.

4

https://www.ece.lsu.edu/ee4720/2022/hw04-orc.svg

The solution appears below in turquoise. The orc. b instruction has one source, the rs register value. That value is taken at
the output of the upper ALU mux, this way we can take care of the existing bypass paths and control logjc.

The output of orc.b connects to two places. For the important orc.b | beq Use case the output is connected directly to
the braneh = mux Tor a stall-free Dypass o the braneh instruction. For other cases we need to put it on & path to the register fle.
The chosen solution TIrst puts it in the rtv mux, because that path is not otherwise used by the orc. b instruction. Then, in the
ME stage 2 mux is used o put the value on the “main” path back to the register file. The signal is used as & select input
to the mux. Of course, the signal travels with the instruction by using pipeline latehes.

There are two efficiency issues worth noting. First, it is possible to place a mux between the ALU and the pipeline lateh, and
have the orc.b output connect to an input to that mux. That would have received full eredit. But, it would be correct to argue
that the output of the ALU was on the eritical path and so that should be avoided. That is why in the solution below the path from
the ALU output to the lateh i not touched. For the same reason the path from ME.ALU to the memory port address input is not
touehed.

msby 29:26
ID EX ME WB
NPC | ALU
25:21 l L—
+1 Addr DataH rsv Mem
20:16 I HALUH Port
A Addr Datal— rtv | —}
—— Addr
Addr DIn o
> PC D DH MD
}, rtv In Out 1__
7
20 2’b02 15:0 [format vl =
msb Isb Immed
Addr is orc.b
Mem (" Decode
dst dst dst |+
Port pata| | o \dest.reg)
Out

	Problem 1
	Part char 97
	Part char 98

	Problem 2
	Problem 3

