LSU EE 4720 Homework 3 solution Due: 9 March 2022

Note: The following problems (or very similar problems) were assigned in 2020 and 2021, and their
solutions are available. DO NOT look at the solutions unless you are lost and can’t get help elsewhere. Even
in that case just glimpse.

Problem 1: Appearing below are incorrect executions on the illustrated implementation. Notice that this
implementation is different than the one from the previous problem. For each execution explain why it is
wrong and show the correct execution.

mepy 29:26
ID EX ME WB
—U NPC —L— ALU
25:21 l -
+1 Addr Dataf+{rsv Mem
; 20316 | pyar patabld v b [AL | Port
— - Addr
—Addr D n H— D ol vo
> PC Il—rtvfln Out

20 15:0| format
301 12 immed IMM =
msb Isb

Addr
Mem (Decode)
dst dst dst
Port pata| | o || \ dest. reg)
Out

(a) Explain error and show correct execution.

Cycle 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB
xor r4, rl, rb IF ID -> EX ME WB

Thare is a Dypass path available so that there is no need to stall.

Cycle 0 1 2 3 4 5 6 7 SOLUTION
add r1, r2, r3 IF ID EX ME WB
xor r4, rl, r5 IF ID EX ME WB

https://www.ece.lsu.edu/ee4720/

(b) The execution of the branch below has two errors. One error is due to improper handling of the andi
instruction. (That is, if the andi were replaced with a nop there would be no problem in the execution
below.) The other is due to the way the beq executes. As in all code fragments in this problem, the program
is correct, the only problem is with the illustrated execution timing.

Cycle: 01 2 3 4 5 6 7 8
andi r2, r2, ff IF ID EX ME WB

beq ril, r2, TARG IF ID EX ME WB

add r3, r4, rb5 IF ID EX ME WB

Xor IFx

TARG:

sw r6, 7(r8) IF ID EX ME WB
Cycle: 01 2 3 4 5 6 7 8

Briefly, the two problems are the lack of a stall for the andi /beq dependence carried by r2 and because the branch target is
fetehed one eycle later than it should be. The correct execution appears below.

Detalled explanation: In the liustrated implementation the [=]in ID is used to compute the braneh condition for beq (and
bne). When the branch reaches ID, in cycle 2, the value of r2 refrieved from the register file is outdated, it needs to use the value
computed by andi. Since there are no bypass paths to the [=] logic the braneh will need to stall until andi reaches writeback.
The stalls oceur in eycles 2 and 3.

The illustrated implementation resolves the braneh in ID, and so the branch target should be in IF when the branch is in EX.
In the execution above the target isn't fetehed until the braneh is in ME, in cycle 4. That is fixed below Dy fetening the target a cycle
earlier. The xor s no longer fetehed and squashed.

Cycle: 01 2 3 4 5 6 7 8 9 SOLUTION
andi r2, r2, Oxff IF ID EX ME WB

beq rl, r2, TARG IF ID ----> EX ME WB

add r3, r4, rb IF ----> ID EX ME WB

xor

TARG:

sw r6, 7(r8) IF ID EX ME WB

Cycle: 01 2 3 4 5 6 7 8 9

ID EX ME WB
,—U NPC —L— ALU
25:21 l —
+1 Addr Dataf+Hrsv Mem
T 20:16 [yar patalld v b [AL | Port
—— HAddr
— Addr Dn H— D ol o
. PC I]—rtv—ln out
2'b0 15:0|format
301 2 immed IMMI—
msb Isb
Addr
Mem (Decode)
dst dst dst |+
Port Data - \ dest. reg)
Out

(¢) Explain error and show correct execution.

Cycle 01 2 3 4 5 6 7
1w r2, 0(rd) IF ID EX ME WB
add ri1, r2, r7 IF ID EX ME WB

The add depends on the 1w through r2, and for the illustrated implementation the add nas to stall in ID until the 1w reacnes
ME 80 that the add can byp&SS from WB.

Cycle 01 2 3 4 5 6 7 SOLUTION
1w r2, 0(rd) IF ID EX ME WB
add rtl, r2, r7 IF ID -> EX ME WB

(d) Explain error and show correct execution.

Cycle 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB
lw ri, 0(r4) IF ID -> EX ME WB

There i3 no need for a stall because ri is not a source YQg\SIQY of 1w. Note that r1 is a destination of 1w.

Cycle 0 1 2 3 4 5 6 7 SOLUTION
add r1, r2, r3 IF ID EX ME WB
lw rl, 0(rd) IF ID EX ME WB

(e) Explain error and show correct execution.

Cycle 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB
sw ri, 0(rd) IF ID -> EX ME WB

No stall is needed here because the sw can use the ME-10-EX Dyp&SS pﬁ[h.

Cycle 0 1 2 3 4 5 6 7 SOLUTION
add r1, r2, r3 IF ID EX ME WB
sw rl, 0(r4) IF ID EX ME WB

Problem 2: Appearing below is the labeled MIPS implementation from 2018 Midterm Exam Problem 2(b),
and as in that problem each mux in the implementation below is labeled with a circled letter, and mux inputs
are numbered. Some wires are colored to make them easier to follow. Write code sequences that use the
mux inputs as requested below. Some code sequences may consist of a single instruction.

msb | 29:/26
IF D @ [—=F EX ME WB
) 2
E i NPC ALU
B 25:21 Imf Y
+1 @ Addr Data|+{rsv T em
) 20:16 Ingdr Dataf{revl | AWl | Port
o HAddr
Addr Din Tl D ol mo
> PC = EI rtv fF{In Out T
Ay
260 15;0|format © ® ®
301 2 immed IMMI—
msb Isb
Addr
Mem (" Decode)
dst dst dst
Port pata| | o | \ dest. reg)
Out

(a) Use FO. Don’t be fancy about it, just one instruction is all it takes.

Solution appears below. FO is used by values being loaded from memory into the pipeline. Load instructions, inelude 1w, use
FO.

SOLUTION
Cycle 01 2 3 4
lw rl, 0(r2) 1IF ID EX ME WB

(b) Use FO, C2, and D3 at the same time. The code should not suffer a stall. More than one instruction is
needed for the solution. Note: This is new in 2022.

The solution appears below. The FO mux input is used by load instructions. For that a Lw instruction is included in the
solution. The D3 mux input is used o bypass something trom WB 10 the second ALU operand. To use FO and D3 at the same time
the load instruction must be in WB at the same time as the other instruction (&ﬂ add in the example DQ\O\N) is in EX. The add
instruction uses the D3 hypass 1o get the value of r1 written by the 1w. To use C2 the instruction must use an unbypassed value
Tor the nrst source. The Tirst source of the add is r9 which nas not been written by the Two prior instructions, and so it can use the
value from the register file.

SOLUTION

Cycle 0 1 2 3 4 5 6
1w rl, 0(r2) IF ID EX ME WB

xor r5, r6, r7 IF ID EX ME WB
add r3, r9, ri IF ID EX ME WB
Cycle 01 2 3 4 5 6

(c) Explain why its impossible to use E0 and DO at the same time.

IT EO 13 Tn use then there must be a store instruction in EX. 1T DO is in use then o value is being bypassed to the second ALY
source operand of the instruction in EX. But store instructions use an immediate for the second ALU input, so & store in EX can
only use D2, 1t can't use DO (nor D1 nor D3).

Problem 3: This problem appeared as Problem 2c¢ on the 2020 final exam. Appearing below is our bypassed,
pipelined implementation followed by a code fragment.

It might be helpful to look at Spring 2019 Midterm FExam Problem 4a. That problems asks for the
execution of a loop and for a performance measure based upon how fast that loop executes.

29:26

ID EX ME WB
l NPC T |, ALU
2521 [Aqdr Datal rsv - Mem
20:16 addr Datal{rtv | | AL | Port
] HAddr
—Addr DIn (—4— D ol vo
F rtv —In Out
15:0|format J
immed IMM
Addr
Mem (Decode)
dst dst dst|+
PMthi|Ri \ dest. reg)
Out

(a) Show the execution of the code below on the illustrated implementation up to the point where the first
instruction, addi r2,r2,16, reaches WB in the second iteration.

The execution appears below. The execution is shown untit the beg\nn‘mg of the third iteration. (A full-credit solution would
only need o show execution until cycle 10, when the addi r2,r2,16 reaches WB In the second iteration.) The only stall is a
1-cycle 10ad /use stall suffered by the sw. The first iteration starts in cyele 0 (when the first instruction, addi, s in IF), the seeond
iteration Starts at cyele 6, and the third at cycle 12.

Note that the pattern of stalls in the second iteration is the same as the pattern in the Nrst. We can expect this pattern 1o
continue because the contents of the pipeline is the same at the beginning of the seecond and third iterations. (Th@ second iteration
DngS in ¢yele 6. 1n that QyQ\Q the addi r2isin IF, the addi r3isin ID, etc. The contents of the p'\pe\‘mo, is the same in QyQ\Q
12.)

SOLUTION
LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
addi r2, r2, 16 IF ID EX ME WB First Iteration
1w r1, 8(r2) IF ID EX ME WB
sw rl, 12(r3) IF ID -> EX ME WB
bne r3, r4, LOOP IF -> ID EX ME WB
addi r3, r3, 32 IF ID EX ME WB
sub r10, r3, r2
LOOP: # Cycle 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
addi r2, r2, 16 IF ID EX ME WB Second Iteration
1w ri, 8(r2) IF ID EX ME WB
sw ri, 12(r3) IF ID -> EX ME WB
bne r3, r4, LOOP IF -> ID EX ME WB
addi r3, r3, 32 IF ID EX ME WB
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
addi r2, r2, 16 Third Iteration IF ID EX ME WB

(b) Based on your execution determine how many cycles it will take to complete n iterations of the loop.

The time for 7 iterations of the \OOP 18 n times the duration of one iteration of the \oop. The KQy 10 SO\\/N\g this Q()N'QQUy 1S
US\ﬂg the correct duration for an iteration. The duration of an iteration if the time between the start of two consecutive iterations.
In this class the start time of an iteration is the time at whieh the first instruction is in IF. US'\ﬂg that definition the duration of the
first iterationis 6 —0 = 6 cyc and the duration of the secondis 12—6 =6 cyc. S0 the number of QyQ\QS 10 Q()mp\QtQ n iterations

An '\mportam po’mt 10 understand is that the definition of duration above insures that iterations don't ()\IQY\AP. That 8, Dy
deﬂmng an iteration duration as SlMUﬂg in the IF of the first instruetion of the XIQYQI\OH, there is no pOSS'\D'\\'\W that two iterations
OVQN&P and there ig no time g&p Datween them. That's what enables us to mu\t'\p\y a duration by the number of iterations to g@t Q
total time.

some m'\ght he tempt@d to add anothar four QyQ\QS £o account for the addi r3 instruction eomp\et‘mg axecution. No credit
would be lost for that in & SO\UUOD, but that is not useful for our pUYP()SQS because we m'\gm want to add YOgQU\QY the duration of
different p'\QQQS of QOGQ| 80 fOr us the ‘\mportam th'mg is when the next instruetion can be fatehed.

	Problem 1
	Part char 97
	Part char 98
	Part char 99
	Part char 100
	Part char 101

	Problem 2
	Part char 97
	Part char 98
	Part char 99

	Problem 3
	Part char 97
	Part char 98

