
LSU EE 4720 Homework 3 Solution Due: 9 March 2022

Note: The following problems (or very similar problems) were assigned in 2020 and 2021, and their
solutions are available. DO NOT look at the solutions unless you are lost and can’t get help elsewhere. Even
in that case just glimpse.

Problem 1: Appearing below are incorrect executions on the illustrated implementation. Notice that this
implementation is different than the one from the previous problem. For each execution explain why it is
wrong and show the correct execution.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(a) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID -> EX ME WB

There is a bypass path available so that there is no need to stall.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID EX ME WB

1

https://www.ece.lsu.edu/ee4720/

(b) The execution of the branch below has two errors. One error is due to improper handling of the andi

instruction. (That is, if the andi were replaced with a nop there would be no problem in the execution
below.) The other is due to the way the beq executes. As in all code fragments in this problem, the program
is correct, the only problem is with the illustrated execution timing.

Cycle: 0 1 2 3 4 5 6 7 8

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID EX ME WB

add r3, r4, r5 IF ID EX ME WB

xor IFx

TARG:

sw r6, 7(r8) IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8

Briefly, the two problems are the lack of a stall for the andi/beq dependence carried by r2 and because the branch target is

fetched one cycle later than it should be. The correct execution appears below.

Detailed explanation: In the illustrated implementation the = in ID is used to compute the branch condition for beq (and

bne). When the branch reaches ID, in cycle 2, the value of r2 retrieved from the register file is outdated, it needs to use the value

computed by andi. Since there are no bypass paths to the = logic the branch will need to stall until andi reaches writeback.

The stalls occur in cycles 2 and 3.

The illustrated implementation resolves the branch in ID, and so the branch target should be in IF when the branch is in EX.

In the execution above the target isn’t fetched until the branch is in ME, in cycle 4. That is fixed below by fetching the target a cycle

earlier. The xor is no longer fetched and squashed.

Cycle: 0 1 2 3 4 5 6 7 8 9 SOLUTION

andi r2, r2, 0xff IF ID EX ME WB

beq r1, r2, TARG IF ID ----> EX ME WB

add r3, r4, r5 IF ----> ID EX ME WB

xor

TARG:

sw r6, 7(r8) IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8 9

2

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(c) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches

ME so that the add can bypass from WB.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID -> EX ME WB

(d) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because r1 is not a source register of lw. Note that r1 is a destination of lw.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

3

(e) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

No stall is needed here because the sw can use the ME-to-EX bypass path.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EX ME WB

4

Problem 2: Appearing below is the labeled MIPS implementation from 2018 Midterm Exam Problem 2(b),
and as in that problem each mux in the implementation below is labeled with a circled letter, and mux inputs
are numbered. Some wires are colored to make them easier to follow. Write code sequences that use the
mux inputs as requested below. Some code sequences may consist of a single instruction.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

E
D

C

0

B

1

A

0 1

F

(a) Use F0. Don’t be fancy about it, just one instruction is all it takes.

Solution appears below. F0 is used by values being loaded from memory into the pipeline. Load instructions, include lw, use

F0.

SOLUTION

Cycle 0 1 2 3 4

lw r1, 0(r2) IF ID EX ME WB

(b) Use F0, C2, and D3 at the same time. The code should not suffer a stall. More than one instruction is
needed for the solution. Note: This is new in 2022.

The solution appears below. The F0 mux input is used by load instructions. For that a lw instruction is included in the

solution. The D3 mux input is used to bypass something from WB to the second ALU operand. To use F0 and D3 at the same time

the load instruction must be in WB at the same time as the other instruction (an add in the example below) is in EX. The add

instruction uses the D3 bypass to get the value of r1 written by the lw. To use C2 the instruction must use an unbypassed value

for the first source. The first source of the add is r9 which has not been written by the two prior instructions, and so it can use the

value from the register file.

SOLUTION

Cycle 0 1 2 3 4 5 6

lw r1, 0(r2) IF ID EX ME WB

xor r5, r6, r7 IF ID EX ME WB

add r3, r9, r1 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

5

(c) Explain why its impossible to use E0 and D0 at the same time.

If E0 is in use then there must be a store instruction in EX. If D0 is in use then a value is being bypassed to the second ALU

source operand of the instruction in EX. But store instructions use an immediate for the second ALU input, so a store in EX can

only use D2, it can’t use D0 (nor D1 nor D3).

6

Problem 3: This problem appeared as Problem 2c on the 2020 final exam. Appearing below is our bypassed,
pipelined implementation followed by a code fragment.

It might be helpful to look at Spring 2019 Midterm Exam Problem 4a. That problems asks for the
execution of a loop and for a performance measure based upon how fast that loop executes.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(a) Show the execution of the code below on the illustrated implementation up to the point where the first
instruction, addi r2,r2,16, reaches WB in the second iteration.

The execution appears below. The execution is shown until the beginning of the third iteration. (A full-credit solution would

only need to show execution until cycle 10, when the addi r2,r2,16 reaches WB in the second iteration.) The only stall is a

1-cycle load/use stall suffered by the sw. The first iteration starts in cycle 0 (when the first instruction, addi, is in IF), the second

iteration starts at cycle 6, and the third at cycle 12.

Note that the pattern of stalls in the second iteration is the same as the pattern in the first. We can expect this pattern to

continue because the contents of the pipeline is the same at the beginning of the second and third iterations. (The second iteration

begins in cycle 6. In that cycle the addi r2 is in IF, the addi r3 is in ID, etc. The contents of the pipeline is the same in cycle

12.)

SOLUTION
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 IF ID EX ME WB First Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

sub r10, r3, r2

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 IF ID EX ME WB Second Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 Third Iteration IF ID EX ME WB

7

(b) Based on your execution determine how many cycles it will take to complete n iterations of the loop.

The time for n iterations of the loop is n times the duration of one iteration of the loop. The key to solving this correctly is

using the correct duration for an iteration. The duration of an iteration if the time between the start of two consecutive iterations.

In this class the start time of an iteration is the time at which the first instruction is in IF. Using that definition the duration of the

first iteration is 6−0 = 6 cyc and the duration of the second is 12−6 = 6 cyc. So the number of cycles to complete n iterations

is 6n cyc .

An important point to understand is that the definition of duration above insures that iterations don’t overlap. That is, by

defining an iteration duration as starting in the IF of the first instruction of the iteration, there is no possibility that two iterations

overlap and there is no time gap between them. That’s what enables us to multiply a duration by the number of iterations to get a

total time.

Some might be tempted to add another four cycles to account for the addi r3 instruction completing execution. No credit

would be lost for that in a solution, but that is not useful for our purposes because we might want to add together the duration of

different pieces of code, so for us the important thing is when the next instruction can be fetched.

8

	Problem 1
	Part char 97
	Part char 98
	Part char 99
	Part char 100
	Part char 101

	Problem 2
	Part char 97
	Part char 98
	Part char 99

	Problem 3
	Part char 97
	Part char 98

