
LSU EE 4720 Homework 2 Due: 21 February 2022

Problem 1: The code fragment below was taken from the course hex string assembly example. (The hex
string example was not covered this semester. The full example can be found at
https://www.ece.lsu.edu/ee4720/2022/hex-string.s.html.) The fragment below converts the value in
register a0 to an ASCII string, the string is the value in hexadecimal (though initially backward).

LOOP:

andi $t0, $a0, 0xf # Retrieve the least-significant hex digit.

srl $a0, $a0, 4 # Shift over by one hex digit.

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

sb $t2, 0($a1) # Store the digit.

bne $a0, $0, LOOP # Continue if value not yet zero.

addi $a1, $a1, 1 # Move string pointer one character to the left.

(a) Show the encoding of the MIPS bne t1, 0, SKIP instruction. Include all parts, including—especially—
the immediate. For a quick review of MIPS, including the register numbers corresponding to the register
names, visit https://www.ece.lsu.edu/ee4720/2022/lmips.s.html.

(b) RISC-V RV32I has a bne instruction too, though it is not exactly the same. Show the encoding of the
RV32I version of the bne t1, 0, SKIP instruction. For this subproblem assume that the bne will jump
ahead two instructions, just as it does in the code sample above.

To familiarize yourself with RISC-V start by reading Chapter 1 of Volume I of the RISC-V specification,
especially the Chapter 1 Introduction and Sections 1.1 and 1.3. Skip Section 1.2 unless you are comfortable
with operating system and virtualization concepts. Other parts of Chapter 1 are interesting but less relevant
for this problem. Also look at Section 2.5 (Control Transfer Instructions). The spec can be found in the
class references page at https://www.ece.lsu.edu/ee4720/reference.html.

(c) Consider the four-instruction sequence from the code above:

slti $t1, $t0, 10 # Check whether the digit is in range 0-9

bne $t1, $0, SKIP # Don’t forget that delay slot insn always exec.

addi $t2, $t0, 48 # If 0-9, add 48 to make ASCII ’0’ - ’9’.

addi $t2, $t0, 87 # If 10-15, add 87 to make ASCII ’a’ - ’z’.

SKIP:

Re-write this sequence in RISC-V RV32I, and take advantage of RISC-V branch behavior to reduce this
to three instructions (plus possibly one more instruction before the loop). For this problem one needs to
focus on RISC-V branch behavior. Assume that the RISC-V slti and addi instructions are identical to
their MIPS counterparts at the assembly language level. It is okay to retain the MIPS register names. Hint:
One change needs to be made for correctness, another for efficiency.

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2022/hex-string.s.html
https://www.ece.lsu.edu/ee4720/2022/lmips.s.html
https://www.ece.lsu.edu/ee4720/reference.html

Problem 2: Note: The following problem was assigned in each of the last six years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

(b) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

(c) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

(d) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

2

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2
	Part char 97
	Part char 98
	Part char 99
	Part char 100

