
LSU EE 4720 Homework 1 Due: 4 February 2022

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw01.s and look for the
areas labeled “Problem 1” and “Problem 2.”

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2022/hw01.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

This Assignment
In class as MIPS review we wrote a routine, strlen, to find the length of a C string. In our
completed routine (shown below) the main loop consisted of three instructions, and would load one
character per iteration. Therefore at best it could run at the rate of 1

3 characters per instructions.

strlen:

Register Usage

$a0: Address of first character of string.

$v0: Return value, the length of the string.

addi $v0, $a0, 1 # Set aside a copy of the string start + 1.

LOOP:

lbu $t0, 0($a0) # Load next character in string into $t0

bne $t0, $0, LOOP # If it’s not zero, continue

addi $a0, $a0, 1 # Increment address. (Note: Delay slot insn.)

jr $ra

sub $v0, $a0, $v0

Can we do better? Since the main loop only consists of three instructions there is little that
can be done to make it shorter, at least using MIPS I instructions. Notice that a character is
loaded using lbu (load byte unsigned). Suppose instead a lw (load word) were used. Then four
characters would be loaded. If our loop body contained 12 instructions (including the lw) then it
would execute at the same rate as our original strlen because it would operate on 4 characters
per 12 instructions or at the rate of 1

3 characters per instruction. If we could somehow check for a
null with fewer than 12 instructions our new code would be faster.

In Problem 1 such a string length routine is to be completed. It is assumed that most students’
MIPS skills are rusty so the starting point is code using a lhu instruction. In the solution to Problem
1 I attained a rate of 0.392 char/insn, not much better than .329 attained by our original routine.

In Problem 2 the strlen routine is to be written using additional non MIPS-I instructions.
These include orc.b from a RISC-V extension, and clz and clo from MIPS32 (based on their r6
versions). Using these instructions my solution achieves 0.942 chars per insn.

Test Routine
The code for this assignment includes a test routine that runs three string length routines: the
routines to be written for Problems 1 and 2, and the string length routine written in class (called
strlen_ref here). Each routine is run on several strings, including all lengths from 0 to 5, plus
strings of length 23 and 196. The shorter-length strings are there to make sure that the routines

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/proc.html
https://www.ece.lsu.edu/ee4720/2022/hw01.s.html
https://www.ece.lsu.edu/ee4720/reference.html
https://www.ece.lsu.edu/ee4720/proc.html

are correct and to check how fast they are on short strings. The longest string is there to test
performance. The performance numbers from the previous section are based on the longest string.

Here is the output from the unmodified assignment:

** Starting Test of Routine "strlen_p1 (Problem 1 - Bit Ops)" **

String 1: Length 1 is correct. Took 10 insn or 0.100 char/insn

String 2: Length 2 is correct. Took 13 insn or 0.154 char/insn

String 3: Length 3 is correct. Took 16 insn or 0.188 char/insn

String 4: Length 4 is correct. Took 19 insn or 0.211 char/insn

String 5: Length 5 is correct. Took 22 insn or 0.227 char/insn

String 6: Length 0 is correct. Took 7 insn or 0.000 char/insn

String 7: Length 23 is correct. Took 76 insn or 0.303 char/insn

String 8: Length 196 is correct. Took 595 insn or 0.329 char/insn

** Starting Test of Routine "strlen_p2 (Problem 2 - RISC V orc insn)" **

String 1: Length 1 is correct. Took 11 insn or 0.091 char/insn

String 2: Length 2 is correct. Took 15 insn or 0.133 char/insn

String 3: Length 3 is correct. Took 19 insn or 0.158 char/insn

String 4: Length 4 is correct. Took 23 insn or 0.174 char/insn

String 5: Length 5 is correct. Took 27 insn or 0.185 char/insn

String 6: Length 0 is correct. Took 7 insn or 0.000 char/insn

String 7: Length 23 is correct. Took 99 insn or 0.232 char/insn

String 8: Length 196 is correct. Took 791 insn or 0.248 char/insn

** Starting Test of Routine "strlen_ref (Simple strlen routine.)" **

String 1: Length 1 is correct. Took 9 insn or 0.111 char/insn

String 2: Length 2 is correct. Took 12 insn or 0.167 char/insn

String 3: Length 3 is correct. Took 15 insn or 0.200 char/insn

String 4: Length 4 is correct. Took 18 insn or 0.222 char/insn

String 5: Length 5 is correct. Took 21 insn or 0.238 char/insn

String 6: Length 0 is correct. Took 6 insn or 0.000 char/insn

String 7: Length 23 is correct. Took 75 insn or 0.307 char/insn

String 8: Length 196 is correct. Took 594 insn or 0.330 char/insn

To see all of this output when running graphically it might be necessary to make the pop-up
window larger. It is possible to scroll the text in the pop-up window by focusing the window and
using the arrow keys.

Each line shows the result from one string. The length of the string is shown, as well as the
number of instructions executed in the string length routine, and the execution rate. If the returned
length had been wrong both the returned and correct length would be shown but the instruction
count would be omitted.

The strings themselves can be found in the test code after the str label. The testbench does
not print out the strings, just their lengths. Feel free to modify the strings if it helps with debugging,
but please restore them before the deadline.

Using LSU version of SPIM
This assignment requires a modified version of the SPIM simulator originally developed by James
Larus. Instructions for using this simulator appear on the course procedures page. When running
SPIM check the LSU version date, there should be a line reading LSU Version Date: 2022-01-31.
Make sure that the date is there and is no earlier than 31 January 2022. (The date will appear

2

on the console output near the top when run non-graphically, and in the lowermost window pane
when run graphically.)

Two changes were made for this assignment: implementation of the RISC-V-like orb.c in-
struction, and implementation of the MIPS32 r6 (revision 6) clo (count leading ones) instruction.
Also new is the ability to start and stop tracing.

Debugging
To facilitate debugging the code can be run so that the simulator emits a trace of executed in-
structions, plus an indication of changed register values. The trace will mostly include the three
string length routines, but it will also include a few testbench instructions. The trace includes line
numbers so that there should be no confusion about where an instruction is from.

The best way to get a trace is to run the code non-graphically. To do so load the code into an
Emacs buffer in a properly set up account. Press Ctrl - F9 to start the simulator non-graphically.
That should pop up a window showing a simulator banner followed by a prompt:

SPIM Version 6.3.1 lsu of 9 November 2001, 17:34:35 CST

LSU Version Date: 2022-01-31

Copyright 1990-2000 by James R. Larus (larus@cs.wisc.edu).

All Rights Reserved.

See the file README for a full copyright notice.

Includes LSU modifications.

File loaded.

Type "run" to run normally.

Type "step 100" to execute next 100 instructions with tracing.

Type "help" for more help.

(spim)

At the prompt enter step 100 to run the next 100 instructions. The instructions in the string
length routines will be traced, but the count of 100 instructions also includes the test routine (as
of this writing). For example:

(spim) step 100

[0x00400064] 0x4080b000 mtc0 $0, $22 ; 218: mtc0 $0, $22

** Starting Test of Routine "strlen_p1 (Problem 1 - Bit Ops)" **

[0x004000d0] 0x0100f809 jalr $31, $8 ; 251: jalr $t0

Change in $31 ($ra) 0x4000bc -> 0x4000d8 Decimal: 4194492 -> 4194520

[0x004000d4] 0x40154800 mfc0 $21, $9 ; 252: mfc0 $s5, $9

Change in $21 ($s5) 0 -> 0x23 Decimal: 0 -> 35

[0x00400000] 0x20820000 addi $2, $4, 0 ; 84: addi $v0, $a0, 0

Change in $2 ($v0) 0xffffffff -> 0x10010000 Decimal: -1 -> 268500992

[0x00400004] 0x94880000 lhu $8, 0($4) ; 87: lhu $t0, 0($a0)

Change in $8 ($t0) 0x400000 -> 0x3100 Decimal: 4194304 -> 12544

[0x00400008] 0x3109ff00 andi $9, $8, -256 ; 88: andi $t1, $t0, 0xff00

Change in $9 ($t1) 0x100101f0 -> 0x3100 Decimal: 268501488 -> 12544

[0x0040000c] 0x11200006 beq $9, $0, 24 [DONE0-0x0040000c]; 89: beq $t1, $0, DONE0

[0x00400010] 0x310900ff andi $9, $8, 255 ; 90: andi $t1, $t0, 0xff

Each line starting with square brackets shows the execution of an instruction. The address of
the instruction is shown inside the square brackets. After the square brackets the instruction is

3

shown in three different forms. First encoded, shown in hexadecimal. Then a disassembled form
(which is based on the encoded instruction). Finally, after the semicolon the instruction is shown
as it appears in the assembler file. Immediately after the semicolon is a line number.

The lines that start with a # show register values that change. The values are shown both in
hexadecimal and decimal.

Problem 1: Routine strlen_p1 in hw01.s computes the length of a string using a loop that loads
two characters at a time. It achieves a rate of .329 char/insn. Modify it so that it uses a lw instead
of lhu. (Note that there is no such thing as lwu in MIPS I. Such an instruction only makes sense
if registers are larger than 32 bits.) It is possible to achieve .393 chars /insn, or maybe even faster.

The string starting address will be in register a0. That address will be a multiple of 4. Strings
end with a null (a zero). The byte after the null is not part of the string and can be of any value.
Don’t assume it is a particular value.

Your solution should use MIPS-I instructions and should not use pseudo instructions except
for nop. See the check-box comments (such as [] Code should be efficient.) for additional
restrictions, requirements, and reminders.

Problem 2: Complete strlen_p2 so that it determines the string length by loading four characters
(using a lw) and checks for the null using the RISC-V-like orc.b (Bitwise OR-Combine, byte
granule) instruction. Also helpful will be the MIPS32 r6 clz and clo instructions.

The orc.b instruction is part of the RISC-V bit manipulation ISA extensions. See the docu-
mentation for this instruction for details on what it does. The documentation is linked to the course
references page and of course can be found on the RISC-V site. The orc.b is in the strlen_p2

routine, but it doesn’t do anything useful. Of course, that should be changed as part of the solution.
The MIPS32 clz and clo might also come in handy. Look for the MIPS32 r6 (not the older

versions) Volume 2 manuals on the course references page.
It is possible to complete this so that it runs at 0.947 char /insn or faster.

4

	Problem 0
	Problem 1
	Problem 2
	Problem 0
	Problem 1
	Problem 2

