
Name Solution Except problem 4 (branch predictor)

Computer Architecture

LSU EE 4720

Final Examination

Monday, 9 May 2022 10:00-12:00 CDT

Alias Purple Mode.

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck! Thank you for your effort in EE 4720!

https://www.ece.lsu.edu/ee4720/

Problem 1: (20 pts) Show the execution of the code fragments on the following implementations for enough
iterations to determine the instruction throughput (IPC). As always, base the behavior of branches and the
availability of bypasses on the implementations. Also, don’t forget that MIPS branches have a delay slot.
Sorry for yelling, but I hate it when students miss things.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

� Show execution and �determine instruction throughput (IPC) based on a large number of iterations.

The solution appears below. The branch is resolved in ME, and so the target is fetched (in IF) in the next cycle, when the branch

is in WB. Two wrong-path instructions are fetched, xor and sub. They are squashed when the branch is resolved. (Of course, they

would not be squashed if the branch were not taken.)

The instruction throughput is 2 insn
(8−4) cyc = 2

4 insn/cycle based on the second iteration starting at cycle 4 and the third iteration

starting at cycle 8.

SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

xor r5, r6, r7 IF IDx

sub r8, r9, r10 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB # Second Iteration

addi r1, r1, 4 IF ID EX ME WB

xor r5, r6, r7 IF IDx

sub r8, r9, r10 IFx

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

bne r1, r2, LOOP IF ID EX ME WB

...

These instructions will be completely executed after the last iteration.

xor r5, r6, r7

sub r8, r9, r10

2

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

� Show execution and �determine instruction throughput (IPC) based on a large number of iterations.

The solution appears below. The good news in this pipeline the branch is resolved in ID, meaning that zero wrong-path instructions

are fetched. The bad news is that there is a dependence carried by r1 that stalls bne in ID for two cycles. For this reason, the

instruction throughput is the same: 2 insn
(6−2) cyc = 2

4 insn/cycle based on the second iteration starting at cycle 2 and the third

iteration starting at cycle 6.

LOOP: # Code in Static Instruction Order

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10

SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID ----> EX ME WB # Second Iteration

addi r1, r1, 4 IF ----> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

bne r1, r2, LOOP IF ID ----> EX ME WB

addi r1, r1, 4 IF ----> ID EX ME WB

These instructions will be executed after the last iteration.

xor r5, r6, r7

sub r8, r9, r10

3

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

1
0

� Show execution and �determine instruction throughput (IPC) based on a large number of iterations.

In this implementation there is a bypass that helps with the branch condition dependence, reducing the stall from two cycles to one

cycle. The instruction throughput is higher, 2 insn
(5−2) cyc = 2

3 insn/cycle based on the second iteration starting at cycle 2 and the

third iteration starting at cycle 5.

LOOP: # Code in Static Instruction Order

bne r1, r2, LOOP

addi r1, r1, 4

xor r5, r6, r7

sub r8, r9, r10

SOLUTION -- Dynamic Instruction Order

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID EX ME WB # First Iteration

addi r1, r1, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID -> EX ME WB # Second Iteration

addi r1, r1, 4 IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11

bne r1, r2, LOOP IF ID -> EX ME WB

addi r1, r1, 4 IF -> ID EX ME WB

4

Immed

IF ID EX WBME

Ad
dr

D
 In

+16

Mem
Port

Addr

Addr

Mem
Port

md0

dst0Dest. reg

Addr25:21

20:16
rsv0

rtv0Addr
Data
Data

+
31:2

15:0

alu0

rtv0

rtv3

Addr25:21

20:16
rsv3

rtv3Addr
Data
Data

Ad
dr

D
 In

dst3

imm0

imm3

12
8

15:0

alu3
Addr

Mem
Port

md3

dst0

dst3

Register File

ir0

ir3

PC

npc

2'b0

Dest. reg
Data
Out

dst0

dst3

alu3

alu0

Data
Out

Data
Out

Immed

D
In

D
In

Magic
Cloud

� Show execution until the fetch of the lw r1 in the second iteration. �Show instruction throughput (IPC)
assuming a large number of iterations.

Solution appears below. The add stalls due to the dependence carried by r3 and the sw stalls due to the dependence carried by r4.

In this implementation there is a bypass to the memory port D In connection and so the sw r4 need only stall one cycle. In cycle

1 the sub and sw r5 are stalling only so that instructions in ID remain in program order.

The instruction throughput is 9 insn
(7−0) cyc = 9

7 insn/cycle.

SOLUTION -- Dynamic Instruction Order

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12

lw r1, 0(r2) IF ID EX ME WB # 1st Iteration

lw r3, 4(r2) IF ID EX ME WB

add r4, r1, r3 IF ID ----> EX ME WB

sw r4, 0(r6) IF ID -------> EX ME WB

sub r5, r1, r3 IF -------> ID EX ME WB

sw r5, 4(r6) IF -------> ID -> EX ME WB

addi r6, r6, 4 IF -------> ID -> EX ME WB

bne r2, r9, LOOP IF -------> ID -> EX ME WB

addi r2, r2, 8 IF -> ID EX ME WB

xor r10,r11,r12 IFx

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

lw r1, 0(r2) IF ID EX ME WB # 2nd Iteration

5

Problem 2: (20 pts) Appearing below is our MIPS implementation with a floating-point pipeline. The
select inputs of some multiplexors are labeled with a letter. Also, the inputs to some multiplexors have been
colored to make them easier to follow.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data
fsv
ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0
1
2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr
D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode
dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M
1

Int Reg File

=

format
immed

15:0
G

C

H

0

1

1

0

3
2
1

0

2
1

3

0

2
1

3

E

D

6

� Show the values on the select inputs (D, E, and H) expected from the execution shown below. �Leave a
signal blank if it does not affect execution.

Cycle 0 1 2 3 4 5 6

SOLUTION
D: 2 0 3

E: 1 2 2

H: 1 1 0

Cycle 0 1 2 3 4 5 6

Cycle 0 1 2 3 4 5 6

add R3, r5, r6 IF ID EX ME WB

addi r2, R3, 4 IF ID EX ME WB

lw r1, 0(R3) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

� Show instructions that could have produced the select input (D,E,G, and H) values shown below. �Take
dependencies into account when choosing register numbers.

Cycle 0 1 2 3 4 5 6

D: 2 2 3

E: 2 1 2

G: 0

H: 0 1

Cycle 0 1 2 3 4 5 6

SOLUTION
lw R3, 1(r5) IF ID EX ME WB

add R2, r5, r4 IF ID EX ME WB

sw R2, 0(R3) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

� Show the values on the select inputs expected from the execution shown below. �Leave an input blank if
it does not affect execution.

Cycle 0 1 2 3 4 5 6 7 8 9

SOLUTION
G: 2

H: 0 1

C: 0 0 1

Cycle 0 1 2 3 4 5 6 7 8 9

lwc1 f1, 0(r5) IF ID EX ME WF

swc1 f2, 0(r7) IF ID EX ME WB

mtc1 f3, r8 IF ID EX ME WF

add.s f4, f5, f6 IF ID A1 A2 A3 A4 WF

Cycle 0 1 2 3 4 5 6 7 8 9

7

Problem 3: (20 pts) Appearing to the right is the early writeback 2-way superscalar implementation from
the 2021 Final Exam and 2022 Homework 6. Recall that in this implementation if slot 1 contains a load
instruction then slot 1 writes back when it reaches WB but slot 0 writes back early, in ME/MW. If slot 1 does
not contain a load instruction slot 0 writes back when it reaches WB and slot 1 writes back in ME/MW. This is
illustrated in the execution below.

Cycle 0 1 2 3 4 5 6

add r2, r3, r4 IF ID EX ME WB # Slot 0 uses WB since slot 1 isn’t a load.

and r1, r5, r6 IF ID EX MW

or r10, r9, r7 IF ID EX MW # Slot 0 uses MW since slot 1 is a load.

lw r6, 8(r11) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

(a) Consider the execution of the code below:

Cycle 0 1 2 3 4 5

add r2, r3, r4 IF ID EX ME WB

sub r1, r2, r5 IF ID -> EX MW

The sub stalls because it needs to wait for r2 from the add. Add control logic to generate a stall when slot
1 depends on slot 0. The output of rs src and rt src are 1 when the slot-1 instruction uses the rs and rt

registers as sources. Use these in your solution.

�Add hardware to generate a stall (see the big OR gate) when slot 1 depends on slot 0.

The solution is on the next page.

(b) In the first code fragment below the lw r5 stalls, but because the lw has a zero immediate it could have
just used the value computed by the add instruction (since there is no need to add anything to it). In the
second execution Mux A is used to perform a lateral bypass from the add to the lw during cycle 2, avoiding
the stall.

Modify the control logic so that a lateral bypass will be performed when there is a zero-immediate load in
slot 1 that depends on the slot-0 instruction. Other code, such as the examples at the top of this problem,
should continue to work correctly.

Cycle 0 1 2 3 4 5

add r2, r3, r4 IF ID EX ME WB

lw r5, 0(r2) IF ID -> EX ME WB

Cycle 0 1 2 3 4 5

add r2, r3, r4 IF ID EX MW # add executes normally.

lw r5, 0(r2) IF ID EX ME WB # Lateral Bypass: lw uses slot-0 alu value.

�Add logic to detect whether a lateral bypass is possible, and if so, suppress the stall from part a.

�Modify the control logic to implement a lateral bypass, in part using Mux A.

�Make sure that �early writeback continues to work correctly in other cases and �that the destination
of the slot 0 and slot 1 instructions are written to the correct registers.

�As engineers always do, pay attention to cost and performance.

The solution is on the next page.

8

Solutions appears below. The hardware for part (a) appears in purple. To detect the dependence the destination of the slot-0

instruction is compared to the rs and rt sources of the slot-1 instruction. The rs src and rt src blocks are used to check whether

the rs and rt fields of the instruction are used for sources. (In most type I instructions the rt is not used for a source. Some

instructions, such as floating-point instructions don’t have any integer sources.)

The hardware for part (b) appears in orange. A lateral bypass is possible if there is a memory instruction in slot 1 with a zero

immediate, and if the rs source depends on the slot-0 instruction. If these conditions are true the stall is suppressed.

The logic for implementing the lateral bypass is very simple. If there is a lateral bypass Mux A uses input 0, otherwise Mux A uses

the input it would have used without a lateral bypass.

Immed

IF ID EX WBME/
MW

Ad
dr

D
 In

+8

Mem
Port

Addr

md

dst0Dest. reg

Addr rsv0

rtv0Addr

Data

Data

+
15:0

31:2

alu0

rtv

 Addr rsv1

rtv1Addr

Data

Data

Ad
dr

D
 In

dst1

imm0

imm1

64

alu1

dst0

dst1

Register File

ir0

ir1

PC

npc

2'b0

Dest. regData
Out

dstx

alux

Immed

Addr

D In

Mem
Port

addr
D

Out

25:21

20:16

25:21

20:16

20:16

15:0

15:0

Is Mem

5'b0

≠'

mem1

mem1

0
11

1
0

0
11

1
0

rs src

rt src

Stall

15:0 =0

Mux A

='

25:21 ='
Lateral
Bypass

latby

Stall due to slot 0 to
slot 1 rt src depend.

Stall due to slot 0 to
slot 1 rs src depend.

Suppress stall when
lateral bypass used.

9

Problem 4: (20 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on several systems, each with a different
branch predictor. One system has a bimodal predictor and the other system has a local predictor with an
6-outcome local history.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T N N T T N T T N N T T N T T N N T T N T <- Outcome

All N’s All T’s All N’s All T’s

--------------- -------------- --------------- -------------- ...

B2: N N ... N N T T ... T T N N ... N N T T ... T T <- Outcome

1 2 7 8 9 10 16 1 2 7 8 9 10 16 <- Position

What is the accuracy of the bimodal predictor on branch B1? Be sure to base the accuracy on a repeating
pattern.

What is the accuracy of the local predictor on B1 ignoring B2.

What is the accuracy of the local predictor on B2 ignoring B1.

What is the accuracy of the bimodal predictor on branch B2?

What is the shortest history size for which the local history predictor is better than the bimodal predictor
on branch B2?

10

Problem 5: (20 pts) Answer each question below.

(a) The diagram below shows a simple direct-mapped cache and the address bit categorization of four lookup
addresses (0x5439, 0x1270, ..).

Tag Store

Data Store
Addr

Data
Out

=
Tag

Valid

CPU

Addr

Data In

hit

Data Out Data
In

Align

Size
Sign

11:2

11:4

1:
0

Addr
Data
Out

Data
In

Memory

Data In

Data Out
Addr

31:12

tag

index

indoff

w

a

w

al
ig

n

tag index align
indoff

offset

31 12 0123411

Memory address
bits categorization.

32

32 32

lbu 0x54390x5 0x43 102 012

lw 0x12700x1 0x27 002 002

lbu 0x54380x5 0x43 102 002

lbu 0x64390x6 0x43 102 012

Miss
Miss

Miss
Hit

Fast and
Expensive

Slow and
Cheap

Outcome (of cache lookup).

Two kinds of memory are used in the diagram above, fast/expensive and slow/cheap.

�On the diagram above show which blocks are fast and which blocks are slow.

The blocks are labeled in blue. The Memory block is labeled slow. (If it weren’t slow there would be no need for a cache.) Note that

both the Data Store and Tag Store must use fast memory.

Suppose that the cache is initially cold (there is nothing in the cache). Show the outcome, hit or miss, of
each of the four lookups.

� Show outcome, hit or miss, on diagram above.

The outcomes appears in the diagram above, in blue.

Find the addresses requested below.

�After the four lookups, what is the smallest address that will hit the cache.

The smallest address is 0x1270.

�After these four lookups, what is the largest address that will hit the cache.

Answer: The largest address is 0x643f.

Explanation: The largest lookup address is 0x6439. Since it is the last of the four lookup addresses it will surely be in the

cache after the four lookups are complete. Each cache miss, including the one for lookup address 0x6439, brings in a line’s worth

of data. The starting address of a line is found by setting the offset and align bits (bits 3 to 0 here) to zero. For 0x6439 the line

starting address is 0x6430. The last, or largest, address in a line can be found by setting all of the offset and align bits to 1. That

yields the answer to the question, 0x643f.

11

(b) Show the encoding for the beq and lw as used in the code below. Be sure to include the immediate value.

addi r6, r0, 10

beq r2, r6, SKIP

lw r1, 4(r3)

add r1, r1, r5

SKIP:

and r9, r9, r1

�Encoding of beq. �Be sure to show a value for the immediate field.

The encoding is shown below. Though the solution shows the opcode of beq, 1002 = 4, full credit would be received for an answer

that showed beq or something like that in the opcode field.

MIPS I:

Opcode

4

31 26

RS

2

25 21

RT

6

20 16

Immed

2

15 0

�Encoding of lw. �Be sure to show a value for the immediate field.

The encoding is shown below. Though the solution shows the opcode of lw, 100112 = 2316 = 3510, full credit would be received

for an answer that showed lw or something like that in the opcode field.

MIPS I:

Opcode

0x23

31 26

RS

3

25 21

RT

1

20 16

Immed

4

15 0

(c) Answer the following about ISA families.

�Which style of implementation are RISC ISAs designed for?

RISC ISAs are designed for pipelined implementations.

�Which style of implementation are VLIW ISAs designed for?

VLIW ISAs are designed for multiple issue (sort of like superscalar) implementations.

(d) Some early RISC ISAs omitted useful magnitude-comparison branch instructions such as bgt r1, r2,

TARG in which the branch is taken if r1 > r2. As branch prediction became more common magnitude-
comparison branch instructions were added to RISC ISAs. One might argue that with branch prediction the
cost and performance impact of magnitude-comparison instructions was lower.

�Explain how the cost of implementing bgt is lower with branch prediction than without.

Because without branch prediction it is likely that the branch would be resolved in the ID stage and so would require the use of a

magnitude comparison unit used only for resolving branches. With branch prediction the magnitude comparison could be done later,

in EX, and could be done using the ALU, and so no extra magnitude comparison unit would be needed.

�Explain how the performance impact of implementing bgt is lower with branch prediction than without.

Without branch prediction the magnitude comparison would likely be done in the ID stage. That magnitude comparison could not

start until the register values were retrieved from the register file, and the time to do both might lengthen the critical path, and so

lower performance. With branch prediction the register values would be retrieved in one cycle ID, and the comparison would be done

in the next cycle, EX, assuming something like the MIPS five-stage implementation used in class.

12

