Name Solution

Computer Architecture

Midterm Solve-Home Examination

Friday, 26 March 2021 to Monday, 29 March 2021 16:00 CDT

Work on this exam alone. Regular class resources, such as notes, papers,
documentation, and code, can be used to find solutions. Do not discuss

this exam with classmates or anyone else, except questions or concerns

about problems should be directed to Dr. Koppelman.

Problem 1
Problem 2
Problem 3
Problem 4

Exam Total

& V([mRNA|aV]) A r>2m = R.<l1

Good Luck!

30 pts
15 pts
15 pts

~ o~ o~ o~
o N

40 pts

(100 pts)

https://www.ece.lsu.edu/ee4720/

Problem 1: [30 pts] One instruction that might have come in handy for Homework 2 is the proposed 1bit,
load bit, instruction. Consider 1bit r1, (r2..r3). This instruction will load a single bit from memory into
r1. Register r2 holds a base address and r3 holds a bit offset. The bit offset is relative to the most-significant
bit of the byte at address r2. So if r3 is zero the MSB is loaded into r1. If r3 is 7 the LSB of the byte at r2
is loaded into r1, if r3 is 8 the MSB of the byte at r2+1 is loaded into r1, etc. (As with Homework 1 and 2,
bit ordering is big-endian.) To help understanding 1bit there are two code fragments below. They do the
same thing, the first uses 1bit, the second uses existing MIPS instructions.

Proposed Instruction
1bit r1, (r2..r3)

Equivalent MIPS Code
sra r9, r3, 3

add r9, r2, r9

lbu r1, 0(r9)

sll r1, rl, 24

andi r9, r3, 7

sllv r1, rl1, r9

srl rl, ri, 31

(@) Modify the illustrated MIPS implementation so that it implements 1bit, omitting control logic. Assume
that the memory port will be set to perform a read byte unsigned operation (the same operation as would
be performed for the 1bu instruction) and the ALU will be set to perform an add operation. (That is, don’t
assume or try to add new operations for the memory port nor for the ALU.) The modifications should
provide the appropriate address to the memory port and should place the appropriate bit in the destination
register.

As always, assume that the critical path is through the memory port. For this problem it is okay to put
additional non-control logic in the WB stage.

@ Add logic to compute the correct load address.

@ Add logic to extract the needed bit.

@ There is no need to show control logic.

@ Don’t assume or implement new Mem Port or ALU operations.
@ It’s okay to add logic to the WB stage.

@ Pay attention to performance.

@ Pay attention to cost. @ Do not show functional units that are more complicated than necessary. @
Use existing pipeline latches and other data carrying paths when possible.

@ As always, do not break other instructions.

The solution appears on the next page.

The solution to parts 4, b, and ¢ appears below in blue and part-e-specinc (ebit) changes appear in green.

For 1bit assume that control logie is set initially for an 1bu instruction. To actually implement 1bit some control logie would
need to be ehanged, but that's NOT Part of this problem. In the EX stage we need to change how the address is computed. An 1bu
would compute rsv+IMM, but for 1bit we need rsv+rtv/8. The added logie computes rtv/8 and connects the value to a new
input on the lower ALU mux. Note that rtv/8 is computed by effectively shifting to the right by 3 bits while sign extending. (With
sign extension rtv can be negative.) Note that the shifting itselr uses no hardware, 1t just relabels bit positions. The only added
hardware in EX is the new mux input.

Note that the value of rtv is taken from the output of the mux used Dy store instructions. By do'mg 80 We can get byp&SSQd values
without T\&V'\ﬂg 10 add new hardware. Byp&SSQO values are needed for part 0.

In WB & mux is used to extract the needed bit, it will be called the bit-extract mux in this diseussion. (That’s The mux with more
than two 'mputs.) FOr 1bit the mux needs 8 inputs, each of one bit, connected £o the 8 LSB of WB. MD. The hardware shown, ratner
than connecting directly 1o WB.MD, connects o the mux that selects either WB.MD or WB.ALU. This is needed for part c. Also, for
part ¢ the DIt extract mux has 32 inputs.

The select signal for the bit-extract mux is taken from the LSB of rtv. In the existing hardware rtv only makes it a§ Tar as ME.
S0 Tor this problem 4 new pipeline laten is added carrying the 5 LSB of rtv 1o WB. For part 4 only the 3 LSB are used, for part ¢
all 5 Dits are used.

The output of the DIt-extract mux is just 1 bit. Thirty-one zeros are appended 1o make 4 32-DIT quantity.

For part ¢, in whieh ebit is implemented, there are several differences with the 1bit implementation. First, we need to deliver
the rsv 10 WB. To do s0 without requiring a new ALY operation, & new zero input to the lower mux has been added. The ALU
will perform an add operation and use the zero input, so the output of the ALU will be rsv. In WB the rsv is in WB.ALU, and as
mentioned earlier, it has & path 1o the DIt extract mux. The select signal needs 1o be 5 DILS TOr ebit, 80 & MuX i used To set the 2
MSB 0f the Dit-extract mux's select signal. 1o zero for 1bit (V&\'\d values are 7-0) and for ebit use DITS 4:3 OT rtv S0 We can get
a range of 31-0 af the select signal.

Common Mistakes: One common mistake was to use the equivalent MIPS code as a blueprint for the hardware. That equivalent
code was provided to be clear on what the 1bit instruction should do, not how it should do it. So & solution with a box for each
instruetion in the equivalent code, such as a four shift-unit boxes for sra, s11, s11v, and srl would De very wasteful.

mebr_ 29:26
Value from which bit
NPC ALU extracted is carried
I | by:
25:21 1 VV{B.ALU for ebit
+1 “=1Addr Data -+ rsv Mem D for Ibi,
, 2016 {n 44 patald v b [ALV | Port
Extract bit specified by
,7] Add r / lower 3 (Ibit) or lower 5
Addr DIn (ebit) bits of the rtv.
s PC ; P o Qc 4 MD 'Eale)TDUt to the mux
rev F—r11in u Is 4 bit.
15:0({format
2'00 immed IMM
30 2 Sign-extend
msb Isb (duplicate MSB 3
Addr glr;r?i to preserve e
Mem (" Decode) dst dst dst ab 1
(dest. reg) (] b Isb
Port Data 9 Shift rtv/by3
—] IR |— bits and connect
Out to lower ALU
input.

(b) Show the execution of the code fragments below on your implementation. Add reasonable bypass paths
to eliminate stalls.

@ Add reasonable bypass paths to avoid stalls that would be suffered by the code below.
@ Show execution of each code fragment (with reasonable bypass paths).

The executions appear below, with mgm'\gm‘mg used to emphgs'\ze registers carrying GQPQT\GQI\Q'\QS.

SOLUTION

Fragment A 0 1 2 3 4 5 6 7

addi R3, r3, 1 IF ID EX ME WB

lbit rR1, (r2..R3) IF ID EX ME WB

add r4, r4, R1 IF ID -> EX ME WB

SOLUTION

Fragment B 01 2 3 4 5 6

lbit r1, (r2..r3) IF ID EX ME WB

addi r3, r3, 1 IF ID EX ME WB

add r4, r4, R1 IF ID EX ME WB

SOLUTION

Fragment C 601 2 3 4 5 6 7 8 9
lbit r1, (r2..r3) IF ID EX ME WB

bne rR1, rO TARG IF ID ----> EX ME WB

addi r3, r3, 1 IF ----> ID EX ME WB
TARG:

xor r8, r9, ri10 IF ID EX ME WB
Cycle: 01 2 3 4 5 6 7 8 9

(c) Consider another instruction ebit, extract bit. Consider ebit r1, r2, r3. This instruction extracts
the bit at position r3 from r2 and writes it to r1. The MSB is at position 0. The bit position is in the least
significant five bits of r3, other bits of r3 are ignored.

Both 1bit and ebit extract a bit from a value, so it is possible to use some of the hardware for 1bit to
implement ebit. One difference is that 1bit extracts an 8-bit quantity while ebit extracts a bit from a
32-bit quantity. If the hardware were shared, the 1bit hardware would have to be upgraded to handle 32-bit
values.

Ignoring whether such sharing really is a good idea, modify the implementation of 1bit so that it could
implement ebit using hardware shared with 1bit.

@ Modify MIPS hardware to implement ebit using hardware shared with 1bit.
@ No need to show control logic.

The solution to this part is snown and discussed several pages back on the page showing the hardware changes.

(d) Explain why an implementation sharing ebit and 1bit hardware would execute the code fragment below
slowly and describe a faster alternative.

ebit rl, r2, r3
add r4, r4, ri

@ Why does the shared hardware implementation slow code below?
@ Why is an implementation of ebit that is similar to other computation instructions faster?
1t 18 slower because the result is Qomputed in WB. Thig will force a GQPQ\'\GQN instruction, suen as the add in the examp\e above 1o

stall one cyele. 1T a bit-extraction mux for ebit had been placed in EX then it would be possible 1o Dypass in the example above
without a stall.

Problem 2: [15 pts] Consider the pointer-chasing loop below. Assume that the loop executes many
iterations on the illustrated hardware.

ID FEF EX ME WB
NPC

—Lf ALU

Addr Data —l rsv Mem
Al | Port

HAddr

29:26

25:21

20;16 Addr Dataf—]rtv

—Addr DIn F—

D DH mD
J Frtv—ln Out

15:0[format

immed IMM

Mem (Decode)
dst dst dst
Port Datal | \ dest. reg)

(a) Show an execution of the loop below for enough iterations—at least two—to compute the IPC (inverse
of CPI). The IPC is the number of executed instructions divided by the number of cycles. Compute it for a
very large number of iterations.

@ Show execution.
@ Compute IPC for a large number of iterations.
@ Check for dependencies and available bypass paths.

The execution appears below. The Trst iteration starts in cyele 1, the second starts in cycle 7, 8o the time for an iteration is

7 —1 =6 cycles. (Th@ start time is when the first instruction is in IF.) Since there are 4 instructions in the 100p body the IPC is
4

_ 2
5 = 3 insn/cycle.

Common Mistakes: One common mistake is forgetting the delay slot instruction (1w r3).

SOLUTION

lw r3, 8(r3) IF ID EX ME WB BEFORE LOOP
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw rl, 4(r3) IF ID -> EX ME WB FIRST ITERATION
sw rl, 0(r3) IF -> ID -> EX ME WB

bne ri1, r5 LOOP IF -> ID EX ME WB

1w r3, 8(r3) IF ID EX ME WB
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw rl, 4(r3) IF ID -> EX ME WB SECOND ITERATION
sw rl, 0(r3) IF -> ID -> EX ME WB

bne ri1, r5 LOOP IF -> ID EX ME WB

lw r3, 8(r3) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
add r5, r3, r9 AFTER LOOP

(b) If the previous part were solved correctly, then there should be two stalls per iteration. One stall could
be eliminated by a bypass path, but the other could not (without increasing critical path). For each stall
in your execution (even if there are more or less than two) show a reasonable bypass path that would avoid
the stall or else explain why such a bypass is not reasonable.

by 29:26
ID EX ME WB
—U NPC —L— ALU
25:21 l =
+1 Addr Dataf+{rsv Mem
; 20316 | pyar patabld v b [AL | Port
E— HAddr
—Addr D n H— D ol vo
rPC Il—rtv——ln Out

20 15:0|format
301 12 immed IMM =
msb Isb

Addr
Mem (Decode)
dst dst dst
Port pata| | o || \ dest. reg)
Out

@ Show reasonable bypass paths needed to avoid stalls on your code.
@ For each stall that could not be eliminated with a bypass path, explain why:

As stated in the problem, the code sutrers two stalls. The Tirst stall is due 10 & lw/lw dependence. On the execution apove it ends
in cycle 3 in the Nrst iteration and 9 in the second iteration. (/\ stall ends at the arrow head in the d'\ggram.)
The second stall is due to the lw/ sw GQPQHGQI\QQ. That ends at QyQ\Q 5 in the first iteration.

To examine which bypass patns are possible consider the stall-less, hypothetical, not necessarily correct execution below.

WARNING: HYPOTHETICAL EXECUTION WITHOUT STALLS. WILL NOT RUN CORRECTLY.

1w 3, 8(r3) IF ID EX ME WB BEFORE LOOP
LOOP: # Cycle 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

1w r1, 4(r3) IF ID EX ME WB

sw rl, 0(r3) IF ID EX ME VB

Consider first the 1w r3 / 1w ri1stall. In the hypothetical stall-less execution above the 1w ri needs the value of r3 in the
Deginning of cycle 3 when it is in EX. But at that time 1w r3is just starting ME and so the value has not been loaded. S0 there is
NO reasonable way 1o bypass the value.

Next, consider the 1w/ sw dependence, carried by r1. The sw needs ril af the beginning of its time in the ME stage in eycle 5. AL
that time the 1w is in WB, and $0 it i3 possible To Dypass it. That hypass path is shown in blue. 1T has been pointed out that the
Mem Port is assumed to be on the critical path. But the eritical path is from the Addr input 1o the D Out output. We can assume
that there is some slack on the D In input, meaning that it can be delayed for & short time, which is why the mux is not a problem.
1T would be g problem To put & mux before the Mem Port Addr input or after the Mem Port D Out output.

Problem 3: [15 pts] Appearing below are two candidate MIPS instructions, jca, jump case add, and
jcc, jump case concatenate, that can be used to implement C-style switch statements. The instructions
are designed for case statements that each consist of up to eight instructions. In both instructions the rs
register (register r1 in the examples) holds the address of case statement zero. Case statement 1 starts at
address r1+32, case statement 2 starts at address r1+32*2, etc. The rt register (r2 in the examples) holds
the number of the case statement to jump to, so the address to jump to is r1+32*r2. The only difference
between the two instructions is that in jca the value of r1 must be a multiple of 4 (since instruction addresses
are aligned) while in jcc the value of r1 must be a multiple of 4096 (the 12 least-significant bits must be
zero) and r2 must be less than 128. Like other MIPS control transfers, both instructions have a 1-instruction
delay slot. Note that jca r1, rO is equivalent to jr ril.

The code below shows the use of jca and an equivalent code fragment that uses only existing MIPS instruc-
tions.

Candidate Instruction
jca rl, r2 # Jump to rl + r2 * 32
nop

Another Candidate Instruction
jcc ri, r2 # Jump to { r1[31:12], r2[6:0], 5°b0 }
nop

Equivalent code to jca (and partly jcc) using existing MIPS instructions.
sll r9, r2, 5

add r9, r9, ri

jr r9

nop

A resolve-in-ID implementation of jcc can be designed at low cost and with no risk of lengthening the critical
path. In contrast, a resolve-in-ID implementation of jca would add to cost and risk critical path impact.

(a) Show the datapath changes to the MIPS pipeline on the next page needed for resolve-in-ID implementa-
tions of the two instructions.

@ Show datapath changes (not control logic) for resolve-in-ID implementation of @ jca and @ jcc.
@ As always, pay attention to cost and performance.

The solution and a diseussion of the solution appears on the next page.

(b) Explain why computing a branch target, which is done using an adder, has no critical path impact while
there is critical path impact for jca.

@ Why can a branch safely use an adder in ID, but not jca?
Because the ’mputs 10 the adder for the branch are available at the begmn‘mg of the clock QyQ\Q, in contrast the 'mputs 10 the adder

Tor jca are available later, after they are retrieved from the register nle. Because of This one cannot automatically assume that there
18 enough time Tor the jca adder to compute its sum.

Solution To part a appears below in blue. Note that since the PC holds only 30 DITS, 1T i NOT necessary to compute the two LSB of
the target. (Tth would g\ways De zero M\y\N&y.) FOr that reason 3 Dits, instead of 5 bIts, are prepended 1o the rt register value.

3'b0 —
29,0 Isb
150 31:12 Msb
6:0 3P
msb 29:26 b0 — Omit 2 LSB because they are always zero.
Isb b0 Isb‘\ Because 2 LSB omitted, prepend 3, not 5 bits.
25:0 L
ID =} EX ME WB
NPC NPC T | ALU
2521 addr Data 4] rsv] Mem
2010 aggr Datal-Hrtv | | ALUL- | Port
HAddr
Addr Dn —— , D ol o
i F rv —{in Out i
2'b0 15:0[format
30 2 immed IMM }—
msb Isb
Addr
Mem (" Decode
dst dst dst |+
dest. re
Port patal | | | | \&&reY
Out

Problem 4: [40 pts] Answer each question below.

(a) MIPS branches have one delay slot. That enables five-stage scalar MIPS implementations to fetch the
delay-slot instruction while resolving the branch. So, is the delay slot a feature of the ISA or a feature of
the implementation?

@ Is a delay slot an ISA feature or an implementation feature? @ Explain.

It's an 1SA Teature because it deseribes what instructions do. That is, the feature says that the instruction after a branch executes
whether or not the braneh is taken. Because of this ISA feature some implementations, including our five-stage MIPS pipeline, execute
branches WIth zero penalty. But for others, such s supersealar pipelines (which will be covered soonY), a delay slot adds to complexity
and provides little benent. Because it is an ISA feature, a superscalar implementation must exeeute the one delay slot instruction,
aven if a different number of delay slots would have made more sense.

(b) There are 32 MIPS integer (general-purpose) registers, usually called r0 to r31. But these registers are
also given names, which are shown in the table below. Suppose we wanted to rearrange the names. For
example, suppose we wanted to name register r16 t8 (instead of name r24 t8) and make r24 the new kO.
Which registers could we rearrange without changing the ISA? It must be possible to use the registers for
the purpose suggested by their names after rearranging.

Names Numbers Suggested Usage

$zero: 0 The constant zero.

$at: 1 Reserved for assembler.
$vo-$vi: 2-3 Return value

$a0-$a3: 4-7 Argument

$t0-$t7: 8-15 Temporary (Not preserved by callee.)
$s0-$s7: 16-23 Saved by callee.

$t8-$t9: 24-25 Temporary (Not preserved by callee.)
$k0-$k1: 26-27 Reserved for kernel (operating system).

$ep 28 Global Pointer
$sp 29 Stack Pointer
$fp 30 Frame Pointer
$ra: 31 Return address.

@ Which register numbers can get new names without having to change the ISA? @ Explain.

The ISA dictates special behavior for r0 (‘\t‘s always zero) and for r31 (the jal instruction writes it with return addro.ss). There
18 N0 special banavior for the other registers o they can be renamed. That is, there's no problem with making r1-r4 the argument
registers and r5-r6 the return value registers.

Common Mistake: Some incorrectly supposed that the important-sounding registers such as sp and at could not be renamed.
When it comes to the ABI (which ineludes rules for how registers are used when making procedure calls) sp is important, but no
more important than 0 or sO. BUT there is notning about the MIPS ISA that makes r29 a good choice for the stack pointer (sp),
any other register axcept r0 and r31 could be chosen.

10

(¢) The code fragment below adds 1 to the floating-point value in register £2 and puts the sum in £3.

addi $t1, $0, 1 # Integer 1
mtcl $t1, $f1

cvt.s.w $f1, $f1

add.s $f3, $f1, $f2

@ Explain what the cvt.s.w instruction does in the code above.

The instruction converts the value in the fs register (fl in the examp\e) from a signed integer 1o 4 single-precision Noating-point
value and writes the result in the f£d register (&\SO £1in the example, but it could be different than the SOUFQQ).

@ Re-write the code so that it adds a 1, but does so without a cvt instruction. Note: The original exam used
the wording “without a cvt.s.w instruction.”.

SOLUTION

lui $t1, 3£80 # Note: An IEEE 754 Single 1.0 = 3£800000
mtcl $ti1, $fi

add.s $£3, $f1, $£2

(d) In early RISC ISAs, including MIPS I, floating-point registers were 32 bits and yet many of these ISAs had
double-precision (64-bit) floating-point instructions. Where do these instructions find their 64-bit operands?

@ MIPS-I gets 64-bit floating-point operands . ..

... Trom & pair of registers consecutive. The instruction specifies the even-numbered register of the pair. Consider add.d f£O0,
£2, £8. The 1irst source is in registers £2 and £3, the second source is in £8 and £9. Registers £0 and £1 are written with the
result.

(¢) ARM A64 and RISC-V RV64 are both late RISC ISAs. But ARM A64 has many more instructions than
RISC-V. How does having more instructions help A64 and fewer instructions help RISC-V?

@ Lots of instructions help A64 because . ..

Thaey enable programs to be written with fewer instructions. This reduces program size and presumably reduces execution time and
axecution energy. (CQYI&'\Ny reduced exeeution time and energy ware a goal, since A64 is suceesstul we presume that these goals have
Deen reaened in many A64 '\mp\emenm‘\ons.)

@ Fewer instructions help RISC-V because . ..

... Tt was designed for teaching research purposes and having fewer instructions would reduce the difficulty of carrying out investi-
gations. (Though intended for teaching and research an important design goal is that it be complete enough 1o be used in practical
applications.)

Some pointed out that RISC-V could have fewer instructions in its Dase version, say RV641, hecause its modular design enabled
additional instructions to be added only Dy those who needed them. Even so, RISC-V is still much simpler than A64. BIt extraction
instructions are still in draft form, and there is nothing like A64's scaled indexing. Though not 100% correct, an answer along these
lines would gat Tull eredit.

Some pointed out that RISC-V was intended for embedded applications where low hardware cost is important and easier 1o achieve
WiTh Tewer instructions. That's not 4 bad argument, DUt it ignores several cONTributors to Cost. the core itselt (SUQ\'\ as our plp@\an),
program storage, and execution energy. With o smaller instruction set comes lower-cost cores. But programs Wwill be longer, requiring
more storage and pOIQﬂUQ\\y MOre energy executing them. That's only prob\em it the code for the embedded &Pp\'\QAUOﬂ is beyond
4 certain size and it energy is an issue.

11

(f) Explain the problem with this statement:

Implementations of CISC ISAs were slow because of complex instructions. Only later did computer
engineers discover that with simpler RISC ISAs implementations could be made faster.

@ The statement is misleading or incorrect because ...

... It ignores that the implementation technology used when CISC ISAs were developed was much more costly, so pipelined designs
(for which RISC ISAs were intended) were out of the question and memory eould not be wasted. For that reason an implementation of
a RISC ISA would be slower than an implementation of a CISC ISA back then. Those complex instructions helped reduce redundant
WOrK (such as reading and writing registers or memory). In a non-pipelined implementation complex instructions are not partieularly
diffcult to implement. For example, and arithmetic instruction could retrieve its operands from memory, compute arithmetic on
them, and store them back in memory. There's no problem with complex memory addressing modes, because 4 single ALU could be
used as many times as needed.

(9) Appearing below are MIPS and RISC ISAs’ immediate formats.

Opcode RS RT Immed
MIPS I: ‘ | | ‘
31 26 25 21 20 16 15 0
Imm RS1 fn3 RD Opcode
RISC-V I ‘ | | | ‘
31 20 19 15 14 12 11 76 0

@ What advantage does the MIPS format have?
@ Show an example of a MIPS instruction that could not be encoded in the RISC-V format.
The MIPS format has a \QY%@T immadiate field and so it can be used with \Mg@f immediate values. For examp\o,, the MIPS instruction

addi ri1, r2, 0x1234 has no RISC-V counterpart. That is addi al, a2, 0x12341is not a RISC-V instruction because
the immediate would not it.

@ What advantage does the RISC-V format have? (Another question on this exam implies this advantage is
wasted.)

There are more opeode bits in the RISC-V formart, a total of 10 and $0 based on this format there can be more format-1 opeodes
than in MIPS.

(h) Compilers optimize by scheduling (rearranging) instructions to avoid stalls due to true dependencies. In
that case, why do we need to have bypass paths?

@ Bypass paths are needed despite optimizations because:
Because it is not Q\W&ys pOSS\b\Q £o find an instruction to pUT, Datween o GQPQT\GQM P‘:‘JY 1o avoid & stall. This is pE).TUQU\QNy difficult

in code with frequent branenes. Suppose, Tor example, one out of six instructions waere 4 braneh. Then scheduling could only easily
De done with about five instructions, making it difficult Lo ind instructions to move.

12

