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Problem 1: [30 pts] One instruction that might have come in handy for Homework 2 is the proposed lbit,
load bit, instruction. Consider lbit r1, (r2..r3). This instruction will load a single bit from memory into
r1. Register r2 holds a base address and r3 holds a bit offset. The bit offset is relative to the most-significant
bit of the byte at address r2. So if r3 is zero the MSB is loaded into r1. If r3 is 7 the LSB of the byte at r2
is loaded into r1, if r3 is 8 the MSB of the byte at r2+1 is loaded into r1, etc. (As with Homework 1 and 2,
bit ordering is big-endian.) To help understanding lbit there are two code fragments below. They do the
same thing, the first uses lbit, the second uses existing MIPS instructions.

# Proposed Instruction

lbit r1, (r2..r3)

# Equivalent MIPS Code

sra r9, r3, 3

add r9, r2, r9

lbu r1, 0(r9)

sll r1, r1, 24

andi r9, r3, 0x7

sllv r1, r1, r9

srl r1, r1, 31

(a) Modify the illustrated MIPS implementation so that it implements lbit, omitting control logic. Assume
that the memory port will be set to perform a read byte unsigned operation (the same operation as would
be performed for the lbu instruction) and the ALU will be set to perform an add operation. (That is, don’t
assume or try to add new operations for the memory port nor for the ALU.) The modifications should
provide the appropriate address to the memory port and should place the appropriate bit in the destination
register.

As always, assume that the critical path is through the memory port. For this problem it is okay to put
additional non-control logic in the WB stage.

� Add logic to compute the correct load address.

� Add logic to extract the needed bit.

� There is no need to show control logic.

� Don’t assume or implement new Mem Port or ALU operations.

� It’s okay to add logic to the WB stage.

� Pay attention to performance.

� Pay attention to cost. � Do not show functional units that are more complicated than necessary. �
Use existing pipeline latches and other data carrying paths when possible.

� As always, do not break other instructions.

The solution appears on the next page.
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The solution to parts a, b, and c appears below in blue and part-c-specific (ebit) changes appear in green.

For lbit assume that control logic is set initially for an lbu instruction. To actually implement lbit some control logic would

need to be changed, but that’s not part of this problem. In the EX stage we need to change how the address is computed. An lbu

would compute rsv+IMM, but for lbit we need rsv+rtv/8. The added logic computes rtv/8 and connects the value to a new

input on the lower ALU mux. Note that rtv/8 is computed by effectively shifting to the right by 3 bits while sign extending. (With

sign extension rtv can be negative.) Note that the shifting itself uses no hardware, it just relabels bit positions. The only added

hardware in EX is the new mux input.

Note that the value of rtv is taken from the output of the mux used by store instructions. By doing so we can get bypassed values

without having to add new hardware. Bypassed values are needed for part b.

In WB a mux is used to extract the needed bit, it will be called the bit-extract mux in this discussion. (That’s the mux with more

than two inputs.) For lbit the mux needs 8 inputs, each of one bit, connected to the 8 LSB of WB.MD. The hardware shown, rather

than connecting directly to WB.MD, connects to the mux that selects either WB.MD or WB.ALU. This is needed for part c. Also, for

part c the bit extract mux has 32 inputs.

The select signal for the bit-extract mux is taken from the LSB of rtv. In the existing hardware rtv only makes it as far as ME.

So for this problem a new pipeline latch is added carrying the 5 LSB of rtv to WB. For part a only the 3 LSB are used, for part c

all 5 bits are used.

The output of the bit-extract mux is just 1 bit. Thirty-one zeros are appended to make a 32-bit quantity.

For part c, in which ebit is implemented, there are several differences with the lbit implementation. First, we need to deliver

the rsv to WB. To do so without requiring a new ALU operation, a new zero input to the lower mux has been added. The ALU

will perform an add operation and use the zero input, so the output of the ALU will be rsv. In WB the rsv is in WB.ALU, and as

mentioned earlier, it has a path to the bit extract mux. The select signal needs to be 5 bits for ebit, so a mux is used to set the 2

MSB of the bit-extract mux’s select signal: to zero for lbit (valid values are 7-0) and for ebit use bits 4:3 of rtv so we can get

a range of 31-0 at the select signal.

Common Mistakes: One common mistake was to use the equivalent MIPS code as a blueprint for the hardware. That equivalent

code was provided to be clear on what the lbit instruction should do, not how it should do it. So a solution with a box for each

instruction in the equivalent code, such as a four shift-unit boxes for sra, sll, sllv, and srl would be very wasteful.
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(b) Show the execution of the code fragments below on your implementation. Add reasonable bypass paths
to eliminate stalls.

� Add reasonable bypass paths to avoid stalls that would be suffered by the code below.

� Show execution of each code fragment (with reasonable bypass paths).

The executions appear below, with highlighting used to emphasize registers carrying dependencies.

## SOLUTION
# Fragment A 0 1 2 3 4 5 6 7

addi R3, r3, 1 IF ID EX ME WB

lbit R1, (r2..R3) IF ID EX ME WB

add r4, r4, R1 IF ID -> EX ME WB

## SOLUTION
# Fragment B 0 1 2 3 4 5 6

lbit R1, (r2..r3) IF ID EX ME WB

addi r3, r3, 1 IF ID EX ME WB

add r4, r4, R1 IF ID EX ME WB

## SOLUTION
# Fragment C 0 1 2 3 4 5 6 7 8 9

lbit R1, (r2..r3) IF ID EX ME WB

bne R1, r0 TARG IF ID ----> EX ME WB

addi r3, r3, 1 IF ----> ID EX ME WB

TARG:

xor r8, r9, r10 IF ID EX ME WB

# Cycle: 0 1 2 3 4 5 6 7 8 9
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(c) Consider another instruction ebit, extract bit. Consider ebit r1, r2, r3. This instruction extracts
the bit at position r3 from r2 and writes it to r1. The MSB is at position 0. The bit position is in the least
significant five bits of r3, other bits of r3 are ignored.

Both lbit and ebit extract a bit from a value, so it is possible to use some of the hardware for lbit to
implement ebit. One difference is that lbit extracts an 8-bit quantity while ebit extracts a bit from a
32-bit quantity. If the hardware were shared, the lbit hardware would have to be upgraded to handle 32-bit
values.

Ignoring whether such sharing really is a good idea, modify the implementation of lbit so that it could
implement ebit using hardware shared with lbit.

� Modify MIPS hardware to implement ebit using hardware shared with lbit.

� No need to show control logic.

The solution to this part is shown and discussed several pages back on the page showing the hardware changes.

(d) Explain why an implementation sharing ebit and lbit hardware would execute the code fragment below
slowly and describe a faster alternative.

ebit r1, r2, r3

add r4, r4, r1

� Why does the shared hardware implementation slow code below?

� Why is an implementation of ebit that is similar to other computation instructions faster?

It is slower because the result is computed in WB. This will force a dependent instruction, such as the add in the example above to

stall one cycle. If a bit-extraction mux for ebit had been placed in EX then it would be possible to bypass in the example above

without a stall.
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Problem 2: [15 pts] Consider the pointer-chasing loop below. Assume that the loop executes many
iterations on the illustrated hardware.
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(a) Show an execution of the loop below for enough iterations—at least two—to compute the IPC (inverse
of CPI). The IPC is the number of executed instructions divided by the number of cycles. Compute it for a
very large number of iterations.

� Show execution.

� Compute IPC for a large number of iterations.

� Check for dependencies and available bypass paths.

The execution appears below. The first iteration starts in cycle 1, the second starts in cycle 7, so the time for an iteration is

7− 1 = 6 cycles. (The start time is when the first instruction is in IF.) Since there are 4 instructions in the loop body the IPC is
4
6 = 2

3 insn/cycle.

Common Mistakes: One common mistake is forgetting the delay slot instruction (lw r3).

## SOLUTION
lw r3, 8(r3) IF ID EX ME WB BEFORE LOOP

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r1, 4(r3) IF ID -> EX ME WB FIRST ITERATION

sw r1, 0(r3) IF -> ID -> EX ME WB

bne r1, r5 LOOP IF -> ID EX ME WB

lw r3, 8(r3) IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r1, 4(r3) IF ID -> EX ME WB SECOND ITERATION

sw r1, 0(r3) IF -> ID -> EX ME WB

bne r1, r5 LOOP IF -> ID EX ME WB

lw r3, 8(r3) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

add r5, r3, r9 AFTER LOOP
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(b) If the previous part were solved correctly, then there should be two stalls per iteration. One stall could
be eliminated by a bypass path, but the other could not (without increasing critical path). For each stall
in your execution (even if there are more or less than two) show a reasonable bypass path that would avoid
the stall or else explain why such a bypass is not reasonable.
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� Show reasonable bypass paths needed to avoid stalls on your code.

� For each stall that could not be eliminated with a bypass path, explain why:

As stated in the problem, the code suffers two stalls. The first stall is due to a lw/lw dependence. On the execution above it ends

in cycle 3 in the first iteration and 9 in the second iteration. (A stall ends at the arrow head in the diagram.)

The second stall is due to the lw/sw dependence. That ends at cycle 5 in the first iteration.

To examine which bypass paths are possible consider the stall-less, hypothetical, not necessarily correct execution below.

## WARNING: HYPOTHETICAL EXECUTION WITHOUT STALLS. WILL NOT RUN CORRECTLY.
lw r3, 8(r3) IF ID EX ME WB BEFORE LOOP

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r1, 4(r3) IF ID EX ME WB

sw r1, 0(r3) IF ID EX ME WB

Consider first the lw r3 / lw r1 stall. In the hypothetical stall-less execution above the lw r1 needs the value of r3 in the

beginning of cycle 3 when it is in EX. But at that time lw r3 is just starting ME and so the value has not been loaded. So there is

no reasonable way to bypass the value.

Next, consider the lw/sw dependence, carried by r1. The sw needs r1 at the beginning of its time in the ME stage in cycle 5. At

that time the lw is in WB, and so it is possible to bypass it. That bypass path is shown in blue. It has been pointed out that the

Mem Port is assumed to be on the critical path. But the critical path is from the Addr input to the D Out output. We can assume

that there is some slack on the D In input, meaning that it can be delayed for a short time, which is why the mux is not a problem.

It would be a problem to put a mux before the Mem Port Addr input or after the Mem Port D Out output.
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Problem 3: [15 pts] Appearing below are two candidate MIPS instructions, jca, jump case add, and
jcc, jump case concatenate, that can be used to implement C-style switch statements. The instructions
are designed for case statements that each consist of up to eight instructions. In both instructions the rs

register (register r1 in the examples) holds the address of case statement zero. Case statement 1 starts at
address r1+32, case statement 2 starts at address r1+32*2, etc. The rt register (r2 in the examples) holds
the number of the case statement to jump to, so the address to jump to is r1+32*r2. The only difference
between the two instructions is that in jca the value of r1 must be a multiple of 4 (since instruction addresses
are aligned) while in jcc the value of r1 must be a multiple of 4096 (the 12 least-significant bits must be
zero) and r2 must be less than 128. Like other MIPS control transfers, both instructions have a 1-instruction
delay slot. Note that jca r1, r0 is equivalent to jr r1.

The code below shows the use of jca and an equivalent code fragment that uses only existing MIPS instruc-
tions.

# Candidate Instruction

jca r1, r2 # Jump to r1 + r2 * 32

nop

# Another Candidate Instruction

jcc r1, r2 # Jump to { r1[31:12], r2[6:0], 5’b0 }

nop

# Equivalent code to jca (and partly jcc) using existing MIPS instructions.

sll r9, r2, 5

add r9, r9, r1

jr r9

nop

A resolve-in-ID implementation of jcc can be designed at low cost and with no risk of lengthening the critical
path. In contrast, a resolve-in-ID implementation of jca would add to cost and risk critical path impact.

(a) Show the datapath changes to the MIPS pipeline on the next page needed for resolve-in-ID implementa-
tions of the two instructions.

� Show datapath changes (not control logic) for resolve-in-ID implementation of � jca and � jcc.

� As always, pay attention to cost and performance.

The solution and a discussion of the solution appears on the next page.

(b) Explain why computing a branch target, which is done using an adder, has no critical path impact while
there is critical path impact for jca.

� Why can a branch safely use an adder in ID, but not jca?

Because the inputs to the adder for the branch are available at the beginning of the clock cycle, in contrast the inputs to the adder

for jca are available later, after they are retrieved from the register file. Because of this one cannot automatically assume that there

is enough time for the jca adder to compute its sum.
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Solution to part a appears below in blue. Note that since the PC holds only 30 bits, it is not necessary to compute the two LSB of

the target. (They would always be zero anyway.) For that reason 3 bits, instead of 5 bits, are prepended to the rt register value.
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Omit 2 LSB because they are always zero.

Because 2 LSB omitted, prepend 3, not 5 bits.
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Problem 4: [40 pts] Answer each question below.

(a) MIPS branches have one delay slot. That enables five-stage scalar MIPS implementations to fetch the
delay-slot instruction while resolving the branch. So, is the delay slot a feature of the ISA or a feature of
the implementation?

� Is a delay slot an ISA feature or an implementation feature? � Explain.

It’s an ISA feature because it describes what instructions do. That is, the feature says that the instruction after a branch executes

whether or not the branch is taken. Because of this ISA feature some implementations, including our five-stage MIPS pipeline, execute

branches with zero penalty. But for others, such as superscalar pipelines (which will be covered soon), a delay slot adds to complexity

and provides little benefit. Because it is an ISA feature, a superscalar implementation must execute the one delay slot instruction,

even if a different number of delay slots would have made more sense.

(b) There are 32 MIPS integer (general-purpose) registers, usually called r0 to r31. But these registers are
also given names, which are shown in the table below. Suppose we wanted to rearrange the names. For
example, suppose we wanted to name register r16 t8 (instead of name r24 t8) and make r24 the new k0.
Which registers could we rearrange without changing the ISA? It must be possible to use the registers for
the purpose suggested by their names after rearranging.

Names Numbers Suggested Usage

$zero: 0 The constant zero.

$at: 1 Reserved for assembler.

$v0-$v1: 2-3 Return value

$a0-$a3: 4-7 Argument

$t0-$t7: 8-15 Temporary (Not preserved by callee.)

$s0-$s7: 16-23 Saved by callee.

$t8-$t9: 24-25 Temporary (Not preserved by callee.)

$k0-$k1: 26-27 Reserved for kernel (operating system).

$gp 28 Global Pointer

$sp 29 Stack Pointer

$fp 30 Frame Pointer

$ra: 31 Return address.

� Which register numbers can get new names without having to change the ISA? � Explain.

The ISA dictates special behavior for r0 (it’s always zero) and for r31 (the jal instruction writes it with return address). There

is no special behavior for the other registers so they can be renamed. That is, there’s no problem with making r1-r4 the argument

registers and r5-r6 the return value registers.

Common Mistake: Some incorrectly supposed that the important-sounding registers such as sp and at could not be renamed.

When it comes to the ABI (which includes rules for how registers are used when making procedure calls) sp is important, but no

more important than t0 or s0. But there is nothing about the MIPS ISA that makes r29 a good choice for the stack pointer (sp),

any other register except r0 and r31 could be chosen.
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(c) The code fragment below adds 1 to the floating-point value in register f2 and puts the sum in f3.

addi $t1, $0, 1 # Integer 1

mtc1 $t1, $f1

cvt.s.w $f1, $f1

add.s $f3, $f1, $f2

� Explain what the cvt.s.w instruction does in the code above.

The instruction converts the value in the fs register (f1 in the example) from a signed integer to a single-precision floating-point

value and writes the result in the fd register (also f1 in the example, but it could be different than the source).

� Re-write the code so that it adds a 1, but does so without a cvt instruction. Note: The original exam used
the wording “without a cvt.s.w instruction.”.

## SOLUTION
lui $t1, 0x3f80 # Note: An IEEE 754 Single 1.0 = 0x3f800000

mtc1 $t1, $f1

add.s $f3, $f1, $f2

(d) In early RISC ISAs, including MIPS I, floating-point registers were 32 bits and yet many of these ISAs had
double-precision (64-bit) floating-point instructions. Where do these instructions find their 64-bit operands?

� MIPS-I gets 64-bit floating-point operands . . .

. . . from a pair of registers consecutive. The instruction specifies the even-numbered register of the pair. Consider add.d f0,

f2, f8. The first source is in registers f2 and f3, the second source is in f8 and f9. Registers f0 and f1 are written with the

result.

(e) ARM A64 and RISC-V RV64 are both late RISC ISAs. But ARM A64 has many more instructions than
RISC-V. How does having more instructions help A64 and fewer instructions help RISC-V?

� Lots of instructions help A64 because . . .

They enable programs to be written with fewer instructions. This reduces program size and presumably reduces execution time and

execution energy. (Certainly reduced execution time and energy were a goal, since A64 is successful we presume that these goals have

been reached in many A64 implementations.)

� Fewer instructions help RISC-V because . . .

. . . it was designed for teaching research purposes and having fewer instructions would reduce the difficulty of carrying out investi-

gations. (Though intended for teaching and research an important design goal is that it be complete enough to be used in practical

applications.)

Some pointed out that RISC-V could have fewer instructions in its base version, say RV64I, because its modular design enabled

additional instructions to be added only by those who needed them. Even so, RISC-V is still much simpler than A64. Bit extraction

instructions are still in draft form, and there is nothing like A64’s scaled indexing. Though not 100% correct, an answer along these

lines would get full credit.

Some pointed out that RISC-V was intended for embedded applications where low hardware cost is important and easier to achieve

with fewer instructions. That’s not a bad argument, but it ignores several contributors to cost: the core itself (such as our pipeline),

program storage, and execution energy. With a smaller instruction set comes lower-cost cores. But programs will be longer, requiring

more storage and potentially more energy executing them. That’s only a problem if the code for the embedded application is beyond

a certain size and if energy is an issue.
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(f) Explain the problem with this statement:

Implementations of CISC ISAs were slow because of complex instructions. Only later did computer
engineers discover that with simpler RISC ISAs implementations could be made faster.

� The statement is misleading or incorrect because . . .

. . . it ignores that the implementation technology used when CISC ISAs were developed was much more costly, so pipelined designs

(for which RISC ISAs were intended) were out of the question and memory could not be wasted. For that reason an implementation of

a RISC ISA would be slower than an implementation of a CISC ISA back then. Those complex instructions helped reduce redundant

work (such as reading and writing registers or memory). In a non-pipelined implementation complex instructions are not particularly

difficult to implement. For example, and arithmetic instruction could retrieve its operands from memory, compute arithmetic on

them, and store them back in memory. There’s no problem with complex memory addressing modes, because a single ALU could be

used as many times as needed.

(g) Appearing below are MIPS and RISC ISAs’ immediate formats.

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

RISC-V I:

Imm

31 20

RS1

19 15

fn3

14 12

RD

11 7

Opcode

6 0

� What advantage does the MIPS format have?

� Show an example of a MIPS instruction that could not be encoded in the RISC-V format.

The MIPS format has a larger immediate field and so it can be used with larger immediate values. For example, the MIPS instruction

addi r1, r2, 0x1234 has no RISC-V counterpart. That is addi a1, a2, 0x1234 is not a RISC-V instruction because

the immediate would not fit.

� What advantage does the RISC-V format have? (Another question on this exam implies this advantage is
wasted.)

There are more opcode bits in the RISC-V format, a total of 10 and so based on this format there can be more format-I opcodes

than in MIPS.

(h) Compilers optimize by scheduling (rearranging) instructions to avoid stalls due to true dependencies. In
that case, why do we need to have bypass paths?

� Bypass paths are needed despite optimizations because:

Because it is not always possible to find an instruction to put between a dependent pair to avoid a stall. This is particularly difficult

in code with frequent branches. Suppose, for example, one out of six instructions were a branch. Then scheduling could only easily

be done with about five instructions, making it difficult to find instructions to move.
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