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Problem 1: [30 pts] One instruction that might have come in handy for Homework 2 is the proposed lbit,
load bit, instruction. Consider lbit r1, (r2..r3). This instruction will load a single bit from memory into
r1. Register r2 holds a base address and r3 holds a bit offset. The bit offset is relative to the most-significant
bit of the byte at address r2. So if r3 is zero the MSB is loaded into r1. If r3 is 7 the LSB of the byte at r2
is loaded into r1, if r3 is 8 the MSB of the byte at r2+1 is loaded into r1, etc. (As with Homework 1 and 2,
bit ordering is big-endian.) To help understanding lbit there are two code fragments below. They do the
same thing, the first uses lbit, the second uses existing MIPS instructions.

# Proposed Instruction

lbit r1, (r2..r3)

# Equivalent MIPS Code

sra r9, r3, 3

add r9, r2, r9

lbu r1, 0(r9)

sll r1, r1, 24

andi r9, r3, 0x7

sllv r1, r1, r9

srl r1, r1, 31

(a) Modify the illustrated MIPS implementation so that it implements lbit, omitting control logic. Assume
that the memory port will be set to perform a read byte unsigned operation (the same operation as would
be performed for the lbu instruction) and the ALU will be set to perform an add operation. (That is, don’t
assume or try to add new operations for the memory port nor for the ALU.) The modifications should
provide the appropriate address to the memory port and should place the appropriate bit in the destination
register.

As always, assume that the critical path is through the memory port. For this problem it is okay to put
additional non-control logic in the WB stage.

Add logic to compute the correct load address.

Add logic to extract the needed bit.

There is no need to show control logic.

Don’t assume or implement new Mem Port or ALU operations.

It’s okay to add logic to the WB stage.

Pay attention to performance.

Pay attention to cost. Do not show functional units that are more complicated than necessary.
Use existing pipeline latches and other data carrying paths when possible.

As always, do not break other instructions.
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(b) Show the execution of the code fragments below on your implementation. Add reasonable bypass paths
to eliminate stalls.

Add reasonable bypass paths to avoid stalls that would be suffered by the code below.

Show execution of each code fragment (with reasonable bypass paths).

# Fragment A

addi r3, r3, 1

lbit r1, (r2..r3)

add r4, r4, r1

# Fragment B

lbit r1, (r2..r3)

addi r3, r3, 1

add r4, r4, r1

# Fragment C

lbit r1, (r2..r3)

bne r1, r0 TARG

addi r3, r3, 1

TARG:

xor r8, r9, r10
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(c) Consider another instruction ebit, extract bit. Consider ebit r1, r2, r3. This instruction extracts
the bit at position r3 from r2 and writes it to r1. The MSB is at position 0. The bit position is in the least
significant five bits of r3, other bits of r3 are ignored.

Both lbit and ebit extract a bit from a value, so it is possible to use some of the hardware for lbit to
implement ebit. One difference is that lbit extracts an 8-bit quantity while ebit extracts a bit from a
32-bit quantity. If the hardware were shared, the lbit hardware would have to be upgraded to handle 32-bit
values.

Ignoring whether such sharing really is a good idea, modify the implementation of lbit so that it could
implement ebit using hardware shared with lbit.

Modify MIPS hardware to implement ebit using hardware shared with lbit.

No need to show control logic.

(d) Explain why an implementation sharing ebit and lbit hardware would execute the code fragment below
slowly and describe a faster alternative.

ebit r1, r2, r3

add r4, r4, r1

Why does the shared hardware implementation slow code below?

Why is an implementation of ebit that is similar to other computation instructions faster?
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Problem 2: [15 pts] Consider the pointer-chasing loop below. Assume that the loop executes many
iterations on the illustrated hardware.
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(a) Show an execution of the loop below for enough iterations—at least two—to compute the IPC (inverse
of CPI). The IPC is the number of executed instructions divided by the number of cycles. Compute it for a
very large number of iterations.

Show execution.

Compute IPC for a large number of iterations.

Check for dependencies and available bypass paths.

lw r3, 8(r3)

LOOP:

lw r1, 4(r3)

sw r1, 0(r3)

bne r1, r5 LOOP

lw r3, 8(r3)

add r5, r3, r9

6



(b) If the previous part were solved correctly, then there should be two stalls per iteration. One stall could
be eliminated by a bypass path, but the other could not (without increasing critical path). For each stall
in your execution (even if there are more or less than two) show a reasonable bypass path that would avoid
the stall or else explain why such a bypass is not reasonable.
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Show reasonable bypass paths needed to avoid stalls on your code.

For each stall that could not be eliminated with a bypass path, explain why:
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Problem 3: [15 pts] Appearing below are two candidate MIPS instructions, jca, jump case add, and
jcc, jump case concatenate, that can be used to implement C-style switch statements. The instructions
are designed for case statements that each consist of up to eight instructions. In both instructions the rs

register (register r1 in the examples) holds the address of case statement zero. Case statement 1 starts at
address r1+32, case statement 2 starts at address r1+32*2, etc. The rt register (r2 in the examples) holds
the number of the case statement to jump to, so the address to jump to is r1+32*r2. The only difference
between the two instructions is that in jca the value of r1 must be a multiple of 4 (since instruction addresses
are aligned) while in jcc the value of r1 must be a multiple of 4096 (the 12 least-significant bits must be
zero) and r2 must be less than 128. Like other MIPS control transfers, both instructions have a 1-instruction
delay slot. Note that jca r1, r0 is equivalent to jr r1.

The code below shows the use of jca and an equivalent code fragment that uses only existing MIPS instruc-
tions.

# Candidate Instruction

jca r1, r2 # Jump to r1 + r2 * 32

nop

# Another Candidate Instruction

jcc r1, r2 # Jump to { r1[31:12], r2[6:0], 5’b0 }

nop

# Equivalent code to jca (and partly jcc) using existing MIPS instructions.

sll r9, r2, 5

add r9, r9, r1

jr r9

nop

A resolve-in-ID implementation of jcc can be designed at low cost and with no risk of lengthening the critical
path. In contrast, a resolve-in-ID implementation of jca would add to cost and risk critical path impact.

(a) Show the datapath changes to the MIPS pipeline on the next page needed for resolve-in-ID implementa-
tions of the two instructions.

Show datapath changes (not control logic) for resolve-in-ID implementation of jca and jcc.

As always, pay attention to cost and performance.

(b) Explain why computing a branch target, which is done using an adder, has no critical path impact while
there is critical path impact for jca.

Why can a branch safely use an adder in ID, but not jca?
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Problem 4: [40 pts] Answer each question below.

(a) MIPS branches have one delay slot. That enables five-stage scalar MIPS implementations to fetch the
delay-slot instruction while resolving the branch. So, is the delay slot a feature of the ISA or a feature of
the implementation?

Is a delay slot an ISA feature or an implementation feature? Explain.

(b) There are 32 MIPS integer (general-purpose) registers, usually called r0 to r31. But these registers are
also given names, which are shown in the table below. Suppose we wanted to rearrange the names. For
example, suppose we wanted to name register r16 t8 (instead of name r24 t8) and make r24 the new k0.
Which registers could we rearrange without changing the ISA? It must be possible to use the registers for
the purpose suggested by their names after rearranging.

Names Numbers Suggested Usage

$zero: 0 The constant zero.

$at: 1 Reserved for assembler.

$v0-$v1: 2-3 Return value

$a0-$a3: 4-7 Argument

$t0-$t7: 8-15 Temporary (Not preserved by callee.)

$s0-$s7: 16-23 Saved by callee.

$t8-$t9: 24-25 Temporary (Not preserved by callee.)

$k0-$k1: 26-27 Reserved for kernel (operating system).

$gp 28 Global Pointer

$sp 29 Stack Pointer

$fp 30 Frame Pointer

$ra: 31 Return address.

Which register numbers can get new names without having to change the ISA? Explain.
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(c) The code fragment below adds 1 to the floating-point value in register f2 and puts the sum in f3.

addi $t1, $0, 1 # Integer 1

mtc1 $t1, $f1

cvt.s.w $f1, $f1

add.s $f3, $f1, $f2

Explain what the cvt.s.w instruction does in the code above.

Re-write the code so that it adds a 1, but does so without the cvt.s.w instruction.

(d) In early RISC ISAs, including MIPS I, floating-point registers were 32 bits and yet many of these ISAs had
double-precision (64-bit) floating-point instructions. Where do these instructions find their 64-bit operands?

MIPS-I gets 64-bit floating-point operands . . .

(e) ARM A64 and RISC-V RV64 are both late RISC ISAs. But ARM A64 has many more instructions than
RISC-V. How does having more instructions help A64 and fewer instructions help RISC-V?

Lots of instructions help A64 because . . .

Fewer of instructions help RISC-V because . . .
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(f) Explain the problem with this statement:

Implementations of CISC ISAs were slow because of complex instructions. Only later did computer
engineers discover that with simpler RISC ISAs implementations could be made faster.

The statement is misleading or incorrect because . . .

(g) Appearing below are MIPS and RISC ISAs’ immediate formats.

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

RISC-V I:

Imm

31 20

RS1

19 15

fn3

14 12

RD

11 7

Opcode

6 0

What advantage does the MIPS format have?

Show an example of a MIPS instruction that could not be encoded in the RISC-V format.

What advantage does the RISC-V format have? (Another question on this exam implies this advantage is
wasted.)

(h) Compilers optimize by scheduling (rearranging) instructions to avoid stalls due to true dependencies. In
that case, why do we need to have bypass paths?

Bypass paths are needed despite optimizations because:

12


