
LSU EE 4720 Homework 3 Solution Due: 1 March 2021

Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Note: The following problem was assigned in each of the last five years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2

PC

15:0

D

dstdst

E
2'b0 format

immed =

(a) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches

WB.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

(b) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because the lw writes r1, it does not read r1.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

1

https://www.ece.lsu.edu/ee4720/

(c) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

(d) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct. But, the stall

starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1, or for that matter that

it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

2

Problem 2: Appearing below are incorrect executions on the illustrated implementation. Notice that this
implementation is different than the one from the previous problem. For each execution explain why it is
wrong and show the correct execution.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(a) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches

ME so that the add can bypass from WB.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID -> EX ME WB

(b) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

There is no need for a stall because r1 is not a source register of lw. Note that r1 is a destination of lw.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

3

(c) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

No stall is needed here because the sw can use the ME-to-EX bypass path.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EX ME WB

(d) Explain error and show correct execution. Note that this execution differs from the one from the previous
problem.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

There is a bypass path available so that there is no need to stall.

Cycle 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID EX ME WB

4

Problem 3: Appearing below is the labeled MIPS implementation from 2018 Midterm Exam Problem 2(b),
and as in that problem each mux in the implementation below is labeled with a circled letter, and mux inputs
are numbered. Some wires are colored to make them easier to follow. Write code sequences that use the
mux inputs as requested below. Some code sequences may consist of a single instruction.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

31:2

31:2

0
1

2
3 0

1
2

3
0

1
2

3

0
1

2

E
D

C

0

B

1

A

0 1

F

(a) Use F0.

Solution appears below. F0 is used by values being loaded from memory into the pipeline. Load instructions, include lw, use

F0.

SOLUTION

Cycle 0 1 2 3 4

lw r1, 0(r2) IF ID EX ME WB

(b) Use F0 and C3 at the same time. The code should not suffer a stall.

The solution appears below. The C3 mux input is used to bypass something from WB to the first ALU operand. To use both

at the same time we need some kind of a load instruction in WB writing rX at the same time there is some instruction in EX that

uses rX as the first operand. In the solution below the lw writes r1 in cycle 4. The instruction after the instruction after the lw,

an add below, will be in EX at this time (since we are assuming no stalls). The first source operand of the add is set to r1 so that

the C3 bypass input will be used.

SOLUTION

Cycle 0 1 2 3 4 5 6

lw r1, 0(r2) IF ID EX ME WB

xor r5, r6, r7 IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

(c) Explain why its impossible to use E0 and D0 at the same time.

5

If E0 is in use then there must be a store instruction in EX. If D0 is in use then a value is being bypassed to the second ALU

source operand of the instruction in EX. But store instructions use an immediate for the second ALU input, so a store in EX can

only use D2, it can’t use D0 (nor D1 nor D3).

6

Problem 4: This problem appeared as Problem 2c on the 2020 final exam. Appearing below is our bypassed,
pipelined implementation followed by a code fragment.

It might be helpful to look at Spring 2019 Midterm Exam Problem 4a. That problems asks for the
execution of a loop and for a performance measure based upon how fast that loop executes.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

(a) Show the execution of the code below on the illustrated implementation up to the point where the first
instruction, addi r2,r2,16, reaches WB in the second iteration.

The execution appears below. The execution is shown until the beginning of the third iteration. (A full-credit solution would

only need to show execution until cycle 10, when the addi r2,r2,16 reaches WB in the second iteration.) The only stall is a

1-cycle load/use stall suffered by the sw. The first iteration starts in cycle 0 (when the first instruction, addi, is in IF), the second

iteration starts at cycle 6, and the third at cycle 12.

Note that the pattern of stalls in the second iteration is the same as the pattern in the first. We can expect this pattern to

continue because the contents of the pipeline is the same at the beginning of the second and third iterations. (The second iteration

begins in cycle 6. In that cycle the addi r2 is in IF, the addi r3 is in ID, etc. The contents of the pipeline is the same in cycle

12.)

SOLUTION
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 IF ID EX ME WB First Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

sub r10, r3, r2

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 IF ID EX ME WB Second Iteration

lw r1, 8(r2) IF ID EX ME WB

sw r1, 12(r3) IF ID -> EX ME WB

bne r3, r4, LOOP IF -> ID EX ME WB

addi r3, r3, 32 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

addi r2, r2, 16 Third Iteration IF ID EX ME WB

7

(b) Based on your execution determine how many cycles it will take to complete n iterations of the loop.

The time for n iterations of the loop is n times the duration of one iteration of the loop. The key to solving this correctly is

using the correct duration for an iteration. The duration of an iteration if the time between the start of two consecutive iterations.

In this class the start time of an iteration is the time at which the first instruction is in IF. Using that definition the duration of the

first iteration is 6−0 = 6 cyc and the duration of the second is 12−6 = 6 cyc. So the number of cycles to complete n iterations

is 6n cyc .

An important point to understand is that the definition of duration above insures that iterations don’t overlap. That is, by

defining an iteration duration as starting in the IF of the first instruction of the iteration, there is no possibility that two iterations

overlap and there is no time gap between them. That’s what enables us to multiply a duration by the number of iterations to get a

total time.

Some might be tempted to add another four cycles to account for the addi r3 instruction completing execution. No credit

would be lost for that in a solution, but that is not useful for our purposes because we might want to add together the duration of

different pieces of code, so for us the important thing is when the next instruction can be fetched.

8

	Problem 1
	Part char 97
	Part char 98
	Part char 99
	Part char 100

	Problem 2
	Part char 97
	Part char 98
	Part char 99
	Part char 100

	Problem 3
	Part char 97
	Part char 98
	Part char 99

	Problem 4
	Part char 97
	Part char 98

