LSU EE 4720 Homework 3 solution Due: 1 March 2021
& Do not hand in paper copies. Instead, E-mail your solution to koppel@ece.lsu.edu. The preferred format
is a PDF file.

Problem 1: Note: The following problem was assigned in each of the last five years, and its solution is
available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Fven in that case
just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.

IF ID EX ME WB
\;D NPC NPC ALU
+1 2521 [addr Data|—{rsv Mem
T 2026 [e Data bl v | ALV | Port
—— | HAddr
— Addr Din D || vo
P> PC rtv Fin Out
260 15:0|format | |
304 42 immed MM :Ei E L
Addr
Mem (Decode)
dst dst dst |
Port Data |R \ dest. reg)
Out

(a) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7
lw r2, 0(r4) IF ID EX ME WB
add ri1, r2, r7 IF ID EX ME WB

The add d@p@nds on the 1w mrough r2, and for the illustrated ‘\mp\ement&t‘\on the add has to stall in ID until the 1w reaches

WB.

Cycle 01 2 3 4 5 6 7 SOLUTION
1w r2, 0(r4) IF ID EX ME WB

add ri1, r2, r7 IF ID ----> EX ME WB

(b) Explain error and show correct execution.

Cycle 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB
lw ri, 0(r4) IF ID -> EX ME WB

There 13 no need for a stall because the 1w writes r1, it does not read ri.

Cycle 0 1 2 3 4 5 6 7 SOLUTION
add r1, r2, r3 IF ID EX ME WB
lw ri, 0(r4) IF ID EX ME WB

https://www.ece.lsu.edu/ee4720/

(c) Explain error and show correct execution.

Cycle 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB
sw ri, 0(rd) IF ID -> EX ME WB

A \ongo,r gtall is needed here because the swreads r1 and it must wait until add reaches WB.

Cycle 0 1 2 3 4 5 6 7 SOLUTION
add ri1, r2, r3 IF ID EX ME WB
sw rl, 0(r4) IF ID ----> EX ME WB

(d) Explain error and show correct execution.

Cycle 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB
xor r4, rl, rb IF ----> ID EX ME WB

The stall above allows the xor, when 1t is in ID, 10 get the value of r1 written Dy the add, that part is correct. But, the stall
starts in cyele 1 before the xor reaches ID, 0 how could the control logic know that the xor needed ri, or Tor thatl matter that
it was an xor? The solution is to start the stall in cyele 2, when the xor is in ID.

Cycle 01 2 3 4 5 6 7 SOLUTION
add ri1, r2, r3 IF ID EX ME WB
xor r4, rl, rb5 IF ID ----> EX ME WB

Problem 2: Appearing below are incorrect executions on the illustrated implementation. Notice that this
implementation is different than the one from the previous problem. For each execution explain why it is
wrong and show the correct execution.

msby 29:26
ID EX ME WB
’—U NPC —L— ALU
2521 l —
+1 Addr Dataf+Hrsv Mem
; 20:36 |\ yor patald v | [AL | Port
—— HAddr
——Addr D In H— D o vo
> PC Il—rtv—ln Out
b0 15:0|format
304 32 immed IMM =
msb Isb
Addr
Mem (Decode)
dst dst dst |+
Port Data - \ dest. reg)
Out

(a) Explain error and show correct execution.

Cycle 0 1 2 3 4 5 6 7
1w r2, 0(rd) IF ID EX ME WB
add ri1, r2, r7 IF ID EX ME WB

The add depends on the 1w through r2, and for the illustrated implementation the add has £o stall in ID until the 1w reacnes
ME 80 that the add can bypass from WB.

Cycle 01 2 3 4 5 6 7 SOLUTION
lw r2, 0(r4) IF ID EX ME WB
add ri1, r2, r7 IF ID -> EX ME WB

(b) Explain error and show correct execution.

Cycle 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB
lw ri, 0(r4) IF ID -> EX ME WB

There is no need for a stall because ri is Ot a source register of 1w. Note that r1l is a destination of 1w.

Cycle 0 1 2 3 4 5 6 7 SOLUTION
add r1, r2, r3 IF ID EX ME WB
lw ri, 0(r4) IF ID EX ME WB

(c) Explain error and show correct execution.

Cycle 01 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB
sw ri, 0(rd) IF ID -> EX ME WB

No stall is needed here because the sw can use the ME-10-EX Dyp&SS pﬁ[h.

Cycle 0 1 2 3 4 5 6 7 SOLUTION
add r1, r2, r3 IF ID EX ME WB
sw rl, 0(r4) IF ID EX ME WB

(d) Explain error and show correct execution. Note that this execution differs from the one from the previous
problem.

Cycle 0 1 2 3 4 5 6 7
add r1, r2, r3 IF ID EX ME WB
xor r4, rl, r5 IF ID ----> EX ME WB

There is o Dypass path available so that there is no need to stall.

Cycle 01 2 3 4 5 6 7 SOLUTION
add rl, r2, r3 IF ID EX ME WB
xor r4, rl, rb5 IF ID EX ME WB

Problem 3: Appearing below is the labeled MIPS implementation from 2018 Midterm Exam Problem 2(b),
and as in that problem each mux in the implementation below is labeled with a circled letter, and mux inputs
are numbered. Some wires are colored to make them easier to follow. Write code sequences that use the
mux inputs as requested below. Some code sequences may consist of a single instruction.

msb | 29:/26
IF D @ [—=F EX ME WB
)]
E i NPC ALU
B 25:21 Imf
1| ® Addr Data [+ rsv f|——{~ Mem
) 20:16 Ingdr Dataf{revl | AWl | Port
o HAddr
Addr Din Tl D ol mo
> PC = EI rtv fF{In Out T
\o 1/
260 15;0|format © ® ®
30+ 42 immed IMMI—
msb Isb
Addr
Mem (" Decode)
dst dst dst
Port pata| | o | \ dest. reg)
Out
(@) Use FO.

Solution appears below. FO is used by values being loaded from memory into the pipeline. Load instructions, inelude 1w, use
FO.

SOLUTION
Cycle 01 2 3 4
lw rl, 0(r2) 1IF ID EX ME WB

(b) Use FO and C3 at the same time. The code should not suffer a stall.

The solution appears below. The C3 mux input i used to bypass something from WB to the first ALU operand. To use both
at the same time we need some Kind of 4 load instruction in WB writing rX at the same time there is some instruction in EX that
uses rX as the frst operand. In the solution below the 1w writes rl in eyele 4. The instruction after the instruction after the 1w,
an add below, will be in EX at this time (since we are assuming no stalls). The Arst souree operand of the add is set 1o r1l 8o that
the C3 bypass input will be used.

SOLUTION

Cycle 01 2 3 4 5 6
1w rl, 0(r2) IF ID EX ME WB

xor rb5, r6, r7 IF ID EX ME WB
add r3, rl, r4 IF ID EX ME WB
Cycle 01 2 3 4 5 6

(¢) Explain why its impossible to use EO and DO at the same time.

5

1T E0 18 In use then there must be a store instruction in EX. 1T DO is in use then a value is being bypassed to the second ALU
source operand of the instruction in EX. But store instructions use an immediate for the second ALU input, so 4 store in EX can
only use D2, it can't use DO U\OT D1 nor D3).

Problem4: This problem appeared as Problem 2¢c on the 2020 final exam. Appearing below is our bypassed,
pipelined implementation followed by a code fragment.

It might be helpful to look at Spring 2019 Midterm FExam Problem 4a. That problems asks for the
execution of a loop and for a performance measure based upon how fast that loop executes.

29:26

ID EX ME WB
l NPC T |, ALU
2521 [Aqdr Datal rsv - Mem
20:16 addr Datal{rtv | | AL | Port
] HAddr
—Addr DIn (—4— D ol vo
F rtv —In Out
15:0|format J
immed IMM
Addr
Mem (Decode)
dst dst dst|+
PMthi|Ri \ dest. reg)
Out

(a) Show the execution of the code below on the illustrated implementation up to the point where the first
instruction, addi r2,r2,16, reaches WB in the second iteration.

The execution appears below. The execution is shown untit the beg\nn‘mg of the third iteration. (A full-credit solution would
only need o show execution until cycle 10, when the addi r2,r2,16 reaches WB In the second iteration.) The only stall is a
1-cycle 10ad /use stall suffered by the sw. The first iteration starts in cyele 0 (when the first instruction, addi, s in IF), the seeond
iteration Starts at cyele 6, and the third at cycle 12.

Note that the pattern of stalls in the second iteration is the same as the pattern in the Nrst. We can expect this pattern 1o
continue because the contents of the pipeline is the same at the beginning of the seecond and third iterations. (Th@ second iteration
DngS in ¢yele 6. 1n that QyQ\Q the addi r2isin IF, the addi r3isin ID, etc. The contents of the p'\pe\‘mo, is the same in QyQ\Q
12.)

SOLUTION
LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
addi r2, r2, 16 IF ID EX ME WB First Iteration
1w r1, 8(r2) IF ID EX ME WB
sw rl, 12(r3) IF ID -> EX ME WB
bne r3, r4, LOOP IF -> ID EX ME WB
addi r3, r3, 32 IF ID EX ME WB
sub r10, r3, r2
LOOP: # Cycle 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
addi r2, r2, 16 IF ID EX ME WB Second Iteration
1w ri, 8(r2) IF ID EX ME WB
sw ri, 12(r3) IF ID -> EX ME WB
bne r3, r4, LOOP IF -> ID EX ME WB
addi r3, r3, 32 IF ID EX ME WB
LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
addi r2, r2, 16 Third Iteration IF ID EX ME WB

(b) Based on your execution determine how many cycles it will take to complete n iterations of the loop.

The time for 7 iterations of the \OOP 18 n times the duration of one iteration of the \oop. The KQy 10 SO\\/N\g this Q()N'QQUy 1S
US\ﬂg the correct duration for an iteration. The duration of an iteration if the time between the start of two consecutive iterations.
In this class the start time of an iteration is the time at whieh the first instruction is in IF. US'\ﬂg that definition the duration of the
first iterationis 6 —0 = 6 cyc and the duration of the secondis 12—6 =6 cyc. S0 the number of QyQ\QS 10 Q()mp\QtQ n iterations

An '\mportam po’mt 10 understand is that the definition of duration above insures that iterations don't ()\IQY\AP. That 8, Dy
deﬂmng an iteration duration as SlMUﬂg in the IF of the first instruetion of the XIQYQI\OH, there is no pOSS'\D'\\'\W that two iterations
OVQN&P and there ig no time g&p Datween them. That's what enables us to mu\t'\p\y a duration by the number of iterations to g@t Q
total time.

some m'\ght he tempt@d to add anothar four QyQ\QS £o account for the addi r3 instruction eomp\et‘mg axecution. No credit
would be lost for that in & SO\UUOD, but that is not useful for our pUYP()SQS because we m'\gm want to add YOgQU\QY the duration of
different p'\QQQS of QOGQ| 80 fOr us the ‘\mportam th'mg is when the next instruetion can be fatehed.

	Problem 1
	Part char 97
	Part char 98
	Part char 99
	Part char 100

	Problem 2
	Part char 97
	Part char 98
	Part char 99
	Part char 100

	Problem 3
	Part char 97
	Part char 98
	Part char 99

	Problem 4
	Part char 97
	Part char 98

