
LSU EE 4720 Homework 2 Due: 8 February 2021

Problem 0: Follow the instructions for class account setup and for homework workflow in
https://www.ece.lsu.edu/ee4720/proc.html. Review the comments in hw02.s and look for the
area labeled “Problem 1.”

Those who want to start before getting to the lab can find the assembler for the entire as-
signment at https://www.ece.lsu.edu/ee4720/2021/hw02.s.html. For MIPS references see the
course references page,
https://www.ece.lsu.edu/ee4720/reference.html. Easy MIPS practice problems can be found
in the practice directory, see MIPS Homework and Practice Workflow in
https://www.ece.lsu.edu/ee4720/proc.html.

This Assignment
One goal of this assignment is to build assembly language proficiency by working with data at
different sizes and by traversing a tree. The sizes are bits for the compressed text, words for the
array of compressed text, half (2-byte) for the tree, and bytes for the dictionary. Another goal is
to provide a starting point for architectural improvements. That is, ISA and hardware changes to
make code go faster.

Huffman Compression Background
One way to compress data is to divide it up into pieces, compute a Huffman coding for the pieces,
then replace each piece with its Huffman code. The size of a Huffman code can vary from 1 bit
(yes, just one), to an arbitrarily long bit vector. Pieces that appear more frequently in the original
text will have short codes and pieces that appear less frequently will have longer codes. Consider
a file containing English text, such as the source file for the Homework 1 handout. One way of
dividing it to pieces is to make each character a piece. For Homework 1 a space was the most
frequent piece (258 times) followed by the letter “e” (174 times). They received codes 1002 and
11102, each of which is shorter than the eight bits used to encode each in the original file. The
character “8” appears just once and gets a long encoding, 110 1100 00012. The compressed data
consists of a concatenation of all of the codes. So “e e” would be encoded 111 0100 11102. The
encoded data does not contain any separators between the pieces. To decode it one needs to first
assume the code is one bit long, see if such a code exists, if not try two bits, and so on. So for the
example one would first look for a code for 12. If it didn’t exist (and it shouldn’t) one checks for
112, which also shouldn’t exist, neither does 1112 (the third try). One the fourth try we look for
11102 and find that this is a code and the value is “e”. The de-coding can continue by trying 12,
102, and finally 1002 which is the code for a space.

Huffman Huff Tree Format for This Assignment
This assignment will use a format in which text is compressed into three arrays, the compressed text,
starting at huff_compressed_text_start, a dictionary of strings, starting at huff_dictionary,
and the Huff Tree (a lookup tree), at huff_tree.

The compressed text is a long bit vector. As with Homework 1, bits are numbered in big-endian
order. The compressed text is specified using words but of course can be read using other sizes.
The dictionary of strings consists of a bunch of null-terminated strings. The Huff Tree is used to
decode compressed pieces. It is traversed using bits of the compressed text (0 for left child, 1 for
right child) and a leaf provides either an index into the dictionary or a character.

Consider the following excerpt from the homework file:

huff_compressed_text_start:

.word 0xd9ac96d8, 0x10b75d4f, 0xa06510d1, 0x7d9961e3, 0xeb6f31f1

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/proc.html
https://www.ece.lsu.edu/ee4720/2021/hw02.s.html
https://www.ece.lsu.edu/ee4720/reference.html
https://www.ece.lsu.edu/ee4720/proc.html

Encoding: .word BIT_START, BIT_END, TREE_POS, DICT_POS, FRAG_LENGTH

huff_debug_samples:

0: 0 11011 -> "\n"

.word 0, 5, 0x2ee, 0xa, 1;

0: 5 001101 -> " ."

.word 5, 11, 0x32, 0x16, 9;

0:11 0110010010 -> "text"

.word 11, 21, 0x110, 0x27b, 4;

0:21 11011 -> "\n"

.word 21, 26, 0x2ee, 0xa, 1;

0:26 011000000 -> "histo"

.word 26, 35, 0xea, 0xce, 5;

1: 3 1000010 -> ":\n"

.word 35, 42, 0x1d6, 0x2e, 2;

The compressed text is shown as 32-bit words, under huff_compressed_text_start and as
an aid in debugging, the start of the same text is shown under huff_debug_samples. The first
piece, 110112, encodes a line feed character (we can see that by looking at the comment). The
second piece, 0011012, encodes “ .” (spaces followed by a period). The first piece is in bits 0 to 4
(inclusive) of the compressed text, and the second piece is in bits 5 to 10. The hexadecimal digits of
the compressed text can be found by concatenating the compressed pieces and then grouping them
into four-bit hex digits: 11011 001101 0110010010 → 1101 1001 1010 1100 1001 0 → d 9 a c

9 ?. That matches the start of the compressed text shown under huff_compressed_text_start.
For this assignment a piece, for example 11011, is decoded by traversing the huff_tree. Each

node in the huff_tree is 16 bits and can be one of three possible kinds: A leaf encoding a character,
a leaf encoding a dictionary entry, or an internal node (with a left and right child). If the value of
a node is <128 it is a leaf encoding a character. Otherwise if the value of a node is >=0x7000 it is
a leaf encoding a dictionary entry. Otherwise it is an internal node.

huff_tree:

Huffman Lookup Tree

#

huff_tree: # Note: Most entries omitted.

.half 0x01fa # Tree Idx 0 Pointer to right child.

.half 0x011d # Tree Idx 1 0 Pointer to right child.

[Many entries not shown.]

.half 0x028c # Tree Idx 378 1 Pointer to right child

[Many entries not shown.]

.half 0x02e2 # Tree Idx 524 11 Pointer to right child.

.half 0x02c7 # Tree Idx 525 110 Pointer to right child.

[Many entries not shown.]

.half 0x02e1 # Tree Idx 583 1101 Pointer to right child.

[Many entries not shown.]

.half 0x000a # Tree Idx 609 11011 Literal "\n"

The Huff Tree is an array of nodes, each a 16-bit value. Let T denote such an array. The
root is T [0]. Let i indicate some position in the tree and n = T [i] denote the node at position i.
The assembler data above shows some elements of a Huff Tree. (The entire tree can be found in
hw02.s.) The numbers in binary (following the Tree Idx) show the path to that node.

2

If n < 128 it is a leaf node encoding a character, and the ASCII value is n. If n ≥ 700016 then
the node is a leaf encoding a dictionary entry. The address of the first character of the dictionary
entry is huff_dictionary + n - 0x7000. The strings in the dictionary are null-terminated.

Let n = T [i] be a non-leaf node, so that n ≥ 128 and n < 700016. Its left child is at T [i + 1]
and its right child is at T [n− 128].

Here is how piece 11011 of the compressed text would be decoded based on the data in the
example above. Start at the root, retrieving T [0]. The value is 1fa16, which is an internal node.
The first bit of 11011 is 1 so we traverse the right child which is at 1fa16 − 8016 = 17a16 = 378.
The entry at tree index 378 (based on the table) is 28c16 which again is an internal node. The
second bit of the piece is 1 so we compute the index of the right child: 28c16− 8016 = 20c16 = 524.
The next compressed bit is zero so we proceed to the left child, at index 524 + 1. The tree excerpt
above includes the entry leading to the leaf node.

The routine below (which can be found in huff-decode.cc in the homework package) decodes
the piece starting at bit bit_offset and writes the decoded piece at dcd_ptr.

void

hdecode(HData& hd, int& bit_offset, char*& dcd_ptr)

{

// Decode one piece, starting at bit position bit_offset and

// write decoded piece starting at dcd_ptr.

// hd.huff_compressed: Compressed text. An array of 32-bit values.

// hd.huff_tree: A tree used to decode the compressed pieces.

// hd.huff_dictionary: Decompressed pieces.

// Start lookup at root of Huffman tree (tree_idx = 0).

//

int tree_idx = 0;

while (true)

{

// Retrieve node.

uint16_t node = hd.huff_tree[tree_idx];

if (node < 128)

{

// Node is a leaf encoding a character.

char c = node; // Node value is an ASCII character.

*dcd_ptr++ = c; // Write character to decoded text pointer ..

return; // .. and return.

}

else if (node >= 0x7000)

{

// Node is a leaf holding an index into the dictionary.

// Compute dictionary index.

int idx = node - 0x7000;

3

// Compute address of first character of dictionary entry.

char* str = hd.huff_dictionary + idx;

// Copy the dictionary entry.

while (*str) *dcd_ptr++ = *str++;

return;

}

else

{

// Node is not a leaf, need to set tree_idx to the index of

// either the left or right child of the node. The left

// child is used if the next bit of compressed text is zero

// and the right child is used if the next bit of compressed

// text is 1.

// Get the next bit of compressed text.

//

int comp_idx = bit_offset / 32; // Index of word in huff_compressed.

int bit_idx = bit_offset % 32; // Index of bit. MSB is 0.

uint32_t comp_word = hd.huff_compressed[comp_idx];

// Move needed bit to LSB in a way that sets other bits to zero.

bool bit = comp_word << bit_idx >> 31;

bit_offset++;

if (bit)

{

// Set tree_idx to index of the right child.

tree_idx = node - 128;

}

else

{

// Set tree_idx to index of the left child.

tree_idx++;

}

}

}

}

Homework Package
The homework package consists of files to help with your solution and to satisfy curiosity. Your
solution, of course, goes in hw02.s, which is in the usual SPIM assembler format for this class.

The Huffman compression was performed by the huff perlscript. To compress MYFILE invoke
it using ./huff MYFILE. With no arguments it compresses itself. It will write two files, encoded.s
and encoded.h. The contents of encoded.s could be copied into the hw02.s (replacing what’s
there). Do this if you’d like to run your code on some other input.

File huff-decode.cc is a C++ routine that includes encoded.h and decodes it. It needs to

4

be re-built for each new input file. (Sorry, I’ve already spent too much time on the assignment.)
Here is how it might be used on a new file:

[koppel@dmk-laptop hw02]$./huff ../../hw02.tex

File ../../hw02.tex

Words 366 Codes 366 Resorts 11

[koppel@dmk-laptop hw02]$ gmake -j 4

g++ --std=c++17 -Wall -g huff-decode.cc -o huff-decode

[koppel@dmk-laptop hw02]$./huff-decode

Decoded:

\magnification 1095

% TeXize-on

\input r/notes

The assignment was created by compressing histo-bare.s.

Problem 1: Complete routine hdecode so that it decodes the piece of Huffman-compressed text
starting at bit number a1, writes the decoded text to memory starting at the address in a2, and
sets registers v0, v1, a1, and a2 as described below. (Yes, a0 is unused.)

Use symbol huff_compressed_text_start for the address of the start of the compressed text,
huff_tree for the address of the start of the Huff Tree, and huff_dictionary for the address of
the start of the dictionary.

When hdecode returns set v0, v1, a1, and a2 as follows. Set a1 to the next bit position to
use. For example, if the compressed piece were 3 bits and hdecode were called with a1=100 then
when hdecode returns a1 should be set to 103. Set a2 to the address at which to write the next
decoded character. For example, if the decoded text is 9 characters (not including the null) and
initially a2=0x1000 then when hdecode returns a2 should be set to 0x1009. When hdecode returns
v0 should be set to the address of the leaf in the Huff Tree that was used and v1 should be set to
either the address of the dictionary entry used or the value of the character.

Note that the return values of a1 and a2 are useful because they are at the values needed to
call hdecode again for the next piece. The return values of v0 and v1 are for debugging.

When hw02.s is run hdecode will be called multiple times, the return values checked, and the
results printed on the console. It will be called for the first 200 pieces, or until there are three
errors, whichever is sooner. A tally of errors is printed at the end, followed by the decoded text.

Pay attention to the error messages. Once syntax and execution errors are fixed, debug your
code by tracing. To trace start the simulator using Ctrl - F9 if running graphically or just F9

non-graphically. At the spim prompt type step 50 to execute the next 50 instructions. The trace
shows line numbers of source assembly to the right of the semicolon. It also shows changed register
values.

Single stepping is most useful when the first piece fails, which is likely to happen at first. But
before long it will be correct and so viewing the trace will be a pain. To have the testbench start
at your erroneous piece first locate the piece after label huff_debug_samples. The first number
after .word is the Bit Position referred to in the “Decoding of..” message. Copy that line (perhaps
with the comment above it) to just below the label huff_debug_samples.

5

	Problem 0
	Problem 1
	Problem 0
	Problem 1

