Name Solution

®

Computer Architecture

Midterm Solve-Home Examination

Tuesday, 14 April 2020 to Friday, 17 April 2020 23:59 CDT

Work on this exam alone. Regular class resources, such as notes, papers,
documentation, and code, can be used to find solutions. Do not discuss
this exam with classmates or anyone else, except questions or concerns

about problems should be directed to Dr. Koppelman.

Problem 1 (15 pts)
Problem 2 (25 pts)
Problem 3 (15 pts)
Problem 4 (15 pts)
Problem 5 (30 pts)
r>2m = R.<l1 Exam Total (100 pts)

Good Luck! Don’t be Foolish!

https://www.ece.lsu.edu/ee4720/

Problem 1: [15 pts] The pipeline below is a slightly lower cost version of the bypassed MIPS implementation
that we’ve been using. The cost saving is achieved by not allowing an instruction to use a bypassed value
from both the ME and WB stage, the value must come from one stage or the other. Select inputs are shown
for three of the re-done EX stage multiplexors, they are labeled A, B, and C. For this problem assume that
they are connected to properly designed control logic.

29:26

msb |

ID = EX ME WB

NPC
ALU
+1 2521 aqdr Data - rsv] Mem
T 20516 | p44r Data ey |7 ALU Port
—— IMM ﬁ Addr
Addr Din D ol vo
> PC rtvp—In Out 1:7
® ®
2'v0 15:0[format
30+ 42 immed
msb Isb
Addr
Mem (" Decode)
dst dst dst
Port Dats |R | dest. reg)
Out [rtis srck

Problem continues on next page.

(a) Show the values on the labeled select signals for an execution of the code below for those cycles in which
an instruction below is in the EX stage. If the value on a select signal does not matter, show an X.

@ Show values of A, B, and C for when EX occupied by code below. @ Use X if value does not matter, blank
when no insn in EX.

Solution appears below.

The following is an explanation to help those studying. There is no need to provide such a long-winded
answer on an exam. The A select S\gﬂ&\ i8 set 1o 1 when & byPQSS from WB is needed and is set to 0 when o byp‘ASS from ME i§
needed. The add instruction does not use & byp&SSQ(] value, 8o A 13 shown as X (m@sm'mg it could be either 0 or 1) in QyQ\Q 2 (Wh@ﬂ
add is in EX). The sub bypasses from ME 50 A'is 0 in cycle 3 and sw bypasses from WB in eycle 450 A'is 1.

The B select signal is 0 iT the rt source is bypassed. Only the sub Dypasses an rt source, 80 Bisoin yele 3, the other instructions
use the value from the register file so Bistin cyeles 2 and 4.

The C select signal is 1 if the immediate is needed at the lower ALU input. That is only true for the sw, where the store memory
address is computed by adding the immediate, 8, 10 the r1 value. The sw instruction uses the rt value too, but that's the store
data whieh is delivered 10 D In.

Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, ri IF ID EX ME WB

sw r6, 8(rl) IF ID EX ME WB
Cycle 0 1 2 3 4 5 6 7 SOLUTION
A X 0 1

B 1 0 1

C 0 0 1
Cycle 0 1 2 3 4 5 6

(b) Show a code fragment that would stall on the implementation above but would not stall on our usual
bypassed MIPS (which appears in Problem 3).

@ Code fragment that stalls on this implementation, but not our usual 5-stage MIPS.

Solution appears below. The xor Instruction uses the result of both the addi and or. The execution is Tor “our usual bypassed
MIPS" whaere both values can be Dypassed and so no stall is needed.

SOLUTION

Cycle 0 1 2 3 4 5 6 Note: Execution is for usual bypassed MIPS.
addi R1, r2, 3 IF ID EX ME WB

or R4, 15, r6 IF ID EX ME WB

xor r7, Rl, R4 IF ID EX ME WB

Problem 2: [25 pts] Appearing below is the lower-cost MIPS implementation from the previous problem.
Design the control logic specified below. The output of is 1 if the rt field of the instruction specifies
a source value, as it does in most type R but only a few type 1, such as sw. The Inkscape SVG source for
the image below can be found at https://www.ece.lsu.edu/ee4720/2020/mt-pl.svg.

@ Design control logic for the labeled multiplexor select signals, A, B, and C.

@ Design control logic to generate a stall signal when a bypass would have been from both ME and WB.

@ Pay attention to the usual stuff: @ Cost and critical path. @ The stage that instructions are in when

the select signals are computed and the stage in which they are used.

Solution appears below. Logic for the select signals is sOwn in two shades of purple (’L\NO shades to help emphasize longer WH‘QS).
Signal ME By is 11 there is o dependence between the instruetion in ID and the instruetion in EX. 1t is used in the next cycle
Tor select signal A Signal rt By is 11T the rt register of the instruetion in ID is & source and it depends on either the instruetion
in EX or ME. It is used for B in the next cyele. Signal C i3 eagiest, 1t 18 117 the instruction is & type R, otherwise it is zero. Type |
instructions that use the ALU need the immediate af the lowaer input. The few type I instructions that use the rt value as a souree,
sueh a8 sw and beq, use the rt value in some place other than the ALU, suen as the ID-stage comparison unit for a beq. Logic
Tor the stall signal, in green, simpty enecks Tor a bypass from bHoth stages.

The solution diseussion continues on the next page.

WB

Stall

mebr 29:26
T 25:0—29:0
IF ?im ID = EX ME
1—) NPC NPC ALU
+1 25:21 [Addr Data rst T Mem
. 1
: 20516 A 44 Data rty A s ALU Port
! 4 Addr
Addr DIn| "™ 1 > ol
> PC rtv In Out L
! 15:0(format @ @ @ ~
30\2"’% immed
msb = Isb ME By
Addr rt By
Mem (" Decode
dst dst dst
Port pata | o || \ dest. reg)
Out {rt is srck
{type R kf
rs 25:21
rt 20:16

https://www.ece.lsu.edu/ee4720/2020/mt-p1.svg

Problem 2 Common Mistakes: Many solutions would generate a stall signal when 4 bypass was needed and the instructions in
EX and ME wrote the same register. For example in the following code fragment . . .

Cycle 01 2 3 4 5 6
sub r1, r2, r3 IF ID EX ME WB

add r1, rl1, r4 IF ID EX ME WB
and r5, rl, r6 IF ID EX ME WB

... the and instruction uses the value of r1 computed by the add. That value will by bypassed to the add in cyele 4 from the ME
stage. The value of r1 carried by the sub instruction is irrelevant to the and. The correct solution here handies this case using the
AND gate with & bubbled input.

In €00 Many solutions the Was optimistically assumed to compute the exact signal needed by the B select input. I'm not
sure it This counts as a MISTEKe, OF as 4 Tace-saving Way o avoid putting in the necessary efort or time management discipline to
s0lve the problem.

On the original exam there was no description of what the logic block did, but it had been used in
earlier assignments in the Spring 2020 semester, and students were free to ask what that block did.

Problem 3: [15 pts] Show the execution of the code fragment below on the illustrated implementation.

msby 29:26
IF ID = EX ME WB
NPC —L~ ALU
25:21 —
+1 Addr DatalH{rsv Mem
T 20516 [n yir Data b rty B AL | Port
—— HAddr
Addr Din T D ol vo
> PC |— rtv—In Out 1?
7
2'b0 15:0|format
30+ 42 immed IMMI—
msb Isb
Addr
Mem (" Decode)
dst dst dst |
Port Data ° | dest. reg)
Out

@ Show execution. M Note tgﬁ the branch is taken. gr Pay attention to the timing of the branch.

Check for dependencies, including for the branch.

The solution appears below.

One common mistake was overlooking that there is no bypass path 1o supply the beq with r3 (\NmQh is needed in the ID stgge),
and so the branch must stall until s1t reaches WB.

Another common mistake is SI&\\'\Y\g when a bprSS p&th iS available.

Branch taken. SOLUTION

Cycle 01 2 3 4 5 6 7 8 9 10 11 12
lw r1, 0(r2) IF ID EX ME WB

slt r3, rl, r4 IF ID -> EX ME WB

beq r3, r0O SKIP IF -> ID ----> EX ME WB

addi r2, r2, 4 IF ———-> ID EX ME WB

xor r5, r5, r9
or r6, r6, r9

SKIP:

addi r7, 7, 4 IF ID EX ME WB

sw rl, 0(z7) IF ID EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 10 11 12

Problem 4: [15 pts] The code fragment below runs inefficiently. Modify the code so that it runs faster
on the implementation below. Instructions can be re-arranged, changed, or removed, and registers can be
changed. Don’t forget that the modified needs to do the same thing as the original code.

29:26

ID FEF EX ME WB
lNPc —Lf ALU
2521 Taddr Data |- rsv — Mem
20:16 Iagdr Datal{rtvl | AL | Port
1] HAddr
—{Addr Din (7— D o mo
F rtv —In Out
15:0| format J
immed IMM
Addr
Mem (Decode)
dst dst dst+
PthmilRi \ dest. reg)
Out

@ Re-write code so that it is faster but, of course, does the same thing as the original.

LOOP:

1w rl, 0(r2)
andi ri1, ri, ff
addi r2, r2, 4
lw r3, 0(r2)

srl r3, r3, 24
add r9, r9, ri
add r9, r9, r3
addi r2, r2, 4
sub r8, r2, riil
bne r8, rO LOOP
nop

First, the easier optimizations. The two addi instructions were replaced by one by using offsets on the load instructions. (MOY@
about those ofTsets \MQT.) Instructions were re-arranged 1o avoid 1oad-use stalls (TOY example the stall suffered Dy the andi in the
original code waiting for r1 1o reaen WB)| and the branch delay slot was nilled.

The sub was eliminated by just ehecking for equality in the braneh, bne r2, ril. The andi sets rl o the 8 least-significant
Dits of the loaded value (\NmQh Was in I‘l). The 1bu r1, 3(r2) loads just those 8 bits, and 80 the andi is no \OﬂgQY necessary.
(Th@ 0ffset is 3 because MIPS is b'\g*Qﬂd'\&ﬂ, meaning the memory address, r2+0, is where the 8 most signincant Dits QYQ.) The srl
instruction extracts the 8 most s'\gnmcm\t Dits of r3. The srl can he avoided Dy aga’m us‘mg an 1bu 1o load lUSt the needed bleA
Note that the offset is —4 because r2 is incremented Dy 8 between the Two 1bu instructions.

LOOP: # SOLUTION

lbu ri1, 3(r2) # Replacement for: 1w r1,0(r2) andi ri1, ri, ff
addi r2, r2, 8 # Replacement for: addi r2, r2, 4 addi r2, r2, 4
lbu r3, -4(r2) # Replacement for: 1w r3,0(r2) srl r3, r3, 24
add r9, r9, ri

bne r2, r1l LOOP # Replacement for: sub r2,r2,r11 beq r8, r0, LOOP
add r9, r9, r3 # Fill branch delay slot.

Problem 5: [30 pts] Answer each question below.

(a) The code fragments
below are to run on
the implementation with
the small-multiply by-
pass from Homework

3 and shown to the right.
For each code fragment,
indicate whether our
small-value bypass fea-
ture always eliminates

a stall, sometimes, or
never? Explain.

2521 [h4dr Data
2016

Addr Data

—Addr DiIn

15:0{format

% 1]
rsv
rtv

{IMM

immed

dst

Mem || (dDecode)
est. re:
Port Data| | 9

Value too large
for 1-cyc multiply.

:‘rt is src

@ Eliminates stall on code below: ® Always O Sometimes O Never
SOLUTION: In bitwise AND result the high 24 bits all O.

andi r3, rb, 0x3f
mul rl, r2, r3
add r6, r6, ri

1w r10, 0(r6)

@ Eliminates stall on code below: O Always O Sometimes ® Never
SOLUTION: This bitwise OR result must be > 255.

ori r3, r5, 0x63f
mul rl, r2, r3
add r6, r6, ril

1w r10, 0(r6)

@ Eliminates stall on code below: ® Always O Sometimes O Never
SOLUTION: Loaded unsigned byte must fit in 8 bits.

1bu r3, 0(r4)
mul rl, r2, r3
add r6, r6, ril
1w r10, 0(r6)

@ Eliminates stall on code below: O Always ® Sometimes O Never
SOLUTION: Loaded value may or may not be < 256.

1w r3, 0(r4)
mul rl, r2, r3
add r6, r6, ri
1w r10, 0(r6)

(b) In typical practice a company decides upon an ISA, and then makes multiple implementations of that
ISA. Let H; and L; be two implementations of ISA I, H is a high-end system and L; is low-cost. Let ISA
E (for expensive) be an ISA designed for high-end systems, and ISA C (for cheap) be an ISA designed for
low-cost systems, and let Hg and L¢ be their implementations. All three ISAs and all four implementations
were designed by skilled engineers with lots of resources.

@ Why might Hg be better than H; and why might Lo be better than L;? The same reason should apply to
both. The answer is related to the ISAs used for the implementations.

H g would be batter then H; because ISA £ would be designed just for high-end implementations and so can inelude features that are
£00d Tor these implementations without regard for whether such features would make it dimeult to design low-cost implementations.
In contrast, 7 m'\ght have omitted expens'\\/e—to—'\mp\emem features and so Ay would not be as gOOG. S'\m'\\ar\y, L would be batter
(pemaps Cost \QSS) than L because C would omit features that are only needed in high-end '\mp\emenmt'\ons.

@ Even if L is better than L;, why might a user still choose L;?

Software compatibility. The cash-strapped user buys Lyout nopes that later he can arord H7 and run his software on it unmodified.
Had the user bought L and then \ater bougnt H g, software would have to be re-compiled before H g could be used.

(¢) Consider the preparation of a set of SPECcpu results. For each item below indicate who is respounsible,
SPEC (the organization) or the tester. Also indicate what would be the problem if it were the other way
around. For example, if you answered that SPEC chooses the benchmarks, then explain the disadvantage of
having the tester choose the benchmarks.

@ Choose the benchmarks: ® SPEC or O The Tester
A benehmark suite is omy useful it all testers use the same benchmarks.

@ Problem if it were the other way around:

IT each tester cnose the benchmarks there would be no way to compare results from two different testers. Tth could differ even if
QX&QI\\j the same system were tested.

@ Choose the benchmark input data: ® SPEC or O The Tester
Ch&mg‘mg the 'mput data can df&SﬁQ&\\y Qh&ﬂg@ the run time, so the reasons are the same as for benchmark choice above.

@ Problem if it were the other way around:

cCertain testers would choose Inputs for whien run time would be low, thus mAng The tested system appear fast.

@ Choose the benchmark training data: ® SPEC or O The Tester

Training data is used for profiling runs. Results from the proﬂ\'mg run are used by the Qomp‘ner o optimize code, for example, 1o
re-arrange code 8o that most branches are not taken.

A case could be made that the choice of training data should be based on how the compiler will use the profiling information. Since
the compiler ehoice I up to the tester, training data ought to be up to the tester to. But the SPEC R&R rules say no, testers SHALL
use the SPEC-provided training inputs.

@ Problem if it were the other way around:

1T the tester were allowed to choose the Training data then eertain unscrupulous testers might use the reference data (U\Q data used
10 compute SPEC SQOYQS) Tor training. That would yield the Dest results, but does not refect 4 real-world situation beeause for all
Kinds of reasons developers don't know in advance the exact inputs their programs will be run with. For one thing, each run the
program usually get different inputs. HOW many people write the exact same letter each Time they use & Word processor?

9

@ Choose the compiler: O SPEC or ® The Tester

SPECepU is designed 1o Test new 1SAs and implementations, and to show their Tull potential. 1t an ISA is truly new then there is
no way SPEC could choose the compiler, the compiler would be developed in-house by the company that designed the new 1SAand
implementation. Furthermore, the compiler can be thought of as part of the system being tested, for example, it Might optimizing
assume the presence of certain features.

@ Problem if it were the other way around:

IT SPEC did enoose the compiler it would be impossible or difficult to test new designs.

@ Choose the compiler optimization flags: O SPEC or ® The Tester

If the tester chose the compiler, but SPEC choose the flags that would mean that SPEC is requiring compilers to support a set of
SPEC flags. A case could be made for this at the base tuning level, in which the programmer is expected to use a set of flags providing
good results, for example, ~03 (optimization level 3) or ~fast. But for the peak tuning level SPEC-provided flags would preciude
experts choosing flags specially chosen for a partieular benchmark on the tested system.

@ Problem if it were the other way around:

1T SPEC chose the flags then the peak results would refiect the best possible performance. That's because SPEC could not be expected
10 choose them for each system and benchmark. (T\'\Qy certainly could not do that years in advance when the suite is developed,
Decause they couldn't know how to set fiags Tor implementations and using compilers that don't yet exist. 1t would cost way oo
much money £o have & SPEC team updating the fags Tor each new benchmark, and anyway would be 4 source of endless squabbling
about the amount of efort the team puts 'm.)

10

(d) The IA-32 ISA has been described as Intel’s golden handcuffs. Who slapped on those handcuffs? What
does the gold refer to? What do the handcuffs refer to? This was discussed in class, but it is okay to use
Web searches to answer this question.

@ The reason for these handcuffs is:

IBM chose the Intel 8086, sort of an 1A-32 implementation, for their personal computer, the IBM PC. That product became very
successful, not because it was the first personal computer, but because the IBM name signaled that personal computers were now
usable Dy anyone, not just hobbyists.

@ They are golden because:

I1BM s0ld 1ots of PCs 80 Intel made 10T8 0f monay.

@ They are handcuffs (a restriction) because:

Short Answer, but sufficient for full credit: A huge base of software ensured customers for future implementations of the
ISA despite 1ts many limitations.

Long Answer: 1ntel may have felt that the 8086 ISA (called 1A-32 In class) was saddled With 100 many restrictions to be useful for
a personal computer ISA with a decade or more of implementations anead, and so would have wanted to develop a new ISA and serap
1A-32. But a computer with a new ISA would not be able to run all the software developed for the very successful PC, and 80 buyers
would have £o walt for new software to become available and hope that their favorite programs would be ported. A buyer then could
Just as easily by a computer using a non-intel CPU. Intel and IBM were well aware of this, and so they dared not change the ISA,
despita its Nlaws. Among the more irritating aws was the nead to use a pair of registars to spacify a 32-bit mamory address. That
made addrags arithmetic mueh more complicated.

11

(e) Appearing below are some hypothetical instructions. Indicate whether each instruction is a better can-
didate for a RISC ISA or a CISC ISA. Explain why.

@ Is the instruction below more O RISC or ® CISC like? @ Explain.
addi ri1, r2, 12345678

RISC 1SAS have fixed size instructions, usually 32 bits. That leaves no room for large immadiates, including the one in the example
apove.

Common Mistake: Some incorrectly assumed that 64-Dit 1SAs had 64-bit instructions and so that immediate could be accom-
modated. In current use "32-bit" and “64-bit" 1SAS refer to the size of a virtual maemory address (U\Q only kind used in class so
T&T). Typically the integer register size matenes the virtual address size, 0 64-DIT systems have 64-bit registers. However there is no
need to inerease the size of the instruction itself. What would o 64-Dit Type R instruction use all the extra space for—other than
immediates? And it would not make sense to nearly double the size of program for those Tew cases where a larger immediate was
needed.

@ Is the instruction below more ® RISC or O CISC like? @ Explain.
lw r1, (r2+r3) # Load rl = Mem[r2 + r3]

The instruction above could easily execute in g RISC pipeling, including our 5-stage MIPS (though MIPS lacks sueh an ‘mstruemon)

in which the ALU could add r2 and r3 just as easily as it could add 4 register value to an immediate.

@ Is the instruction below more ® RISC or O CISC like? @ Explain.
bgt rl, r2, TARG # Branch if rl < r2

This can also easily be pipelined. It is omitted from MIPS 1 only, one assumes, to make it possible to resolve branches in ID. (Testing

equality is easier than eomparing magnitude.)

@ Is the instruction below more O RISC or ® CISC like? @ Explain.
add (r1), r2, (r3) # Mem[r1] = r2 + Mem[r3]

In RISC ISAS memory is accessed by memory instruetions (\O‘AGS and SIO\"QS) other instructions must get their operands from registers,
and so the instruction isn't suitable for RISC.

12

