
Name

Computer Architecture

LSU EE 4720

Midterm Solve-Home Examination

Tuesday, 14 April 2020 to Friday, 17 April 2020 23:59 CDT

Work on this exam alone. Regular class resources, such as notes, papers,

documentation, and code, can be used to find solutions. Do not discuss

this exam with classmates or anyone else, except questions or concerns

about problems should be directed to Dr. Koppelman.

� r ≥ 2 m ⇒ Re < 1

Problem 1 (15 pts)

Problem 2 (25 pts)

Problem 3 (15 pts)

Problem 4 (15 pts)

Problem 5 (30 pts)

Exam Total (100 pts)

Good Luck! Don’t be Foolish!

https://www.ece.lsu.edu/ee4720/

Problem 1: [15 pts] The pipeline below is a slightly lower cost version of the bypassed MIPS implementation
that we’ve been using. The cost saving is achieved by not allowing an instruction to use a bypassed value
from both the ME and WB stage, the value must come from one stage or the other. Select inputs are shown
for three of the re-done EX stage multiplexors, they are labeled A, B, and C. For this problem assume that
they are connected to properly designed control logic.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

A B C

rt is src

(a) Show the values on the labeled select signals for an execution of the code below for those cycles in which
an instruction below is in the EX stage. If the value on a select signal does not matter, show an X.

Show values of A, B, and C for when EX occupied by code below. Use X if value does not matter, blank
when no insn in EX.

Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r1 IF ID EX ME WB

sw r6, 8(r1) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

A

B

C

Cycle 0 1 2 3 4 5 6

(b) Show a code fragment that would stall on the implementation above but would not stall on our usual
bypassed MIPS (which appears in Problem 3).

Code fragment that stalls on this implementation, but not our usual 5-stage MIPS.

2

Problem 2: [25 pts] Appearing below is the lower-cost MIPS implementation from the previous problem.

Design the control logic specified below. The output of rt is src is 1 if the rt field of the instruction specifies
a source value, as it does in most type R but only a few type I, such as sw. The Inkscape SVG source for
the image below can be found at https://www.ece.lsu.edu/ee4720/2020/mt-p1.svg.

Design control logic for the labeled multiplexor select signals, A, B, and C.

Design control logic to generate a stall signal when a bypass would have been from both ME and WB.

Pay attention to the usual stuff: Cost and critical path. The stage that instructions are in when
the select signals are computed and the stage in which they are used.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

A B C

rt is src

3

https://www.ece.lsu.edu/ee4720/2020/mt-p1.svg

Problem 3: [15 pts] Show the execution of the code fragment below on the illustrated implementation.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Show execution. Note that the branch is taken. Pay attention to the timing of the branch.

Check for dependencies, including for the branch.

lw r1, 0(r2)

slt r3, r1, r4

Branch is taken.

beq r3, r0 SKIP

addi r2, r2, 4

xor r5, r5, r9

or r6, r6, r9

SKIP:

addi r7, r7, 4

sw r1, 0(r7)

4

Problem 4: [15 pts] The code fragment below runs inefficiently. Modify the code so that it runs faster
on the implementation below. Instructions can be re-arranged, changed, or removed, and registers can be
changed. Don’t forget that the modified needs to do the same thing as the original code.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Re-write code so that it is faster but, of course, does the same thing as the original.

LOOP:

lw r1, 0(r2)

andi r1, r1, 0xff

addi r2, r2, 4

lw r3, 0(r2)

srl r3, r3, 24

add r9, r9, r1

add r9, r9, r3

addi r2, r2, 4

sub r8, r2, r11

bne r8, r0 LOOP

nop

5

Problem 5: [30 pts] Answer each question below.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Y1 Y2

= mul

is load

a

b

a
*b

rt is src

STALL

mx mx
lx lx lx

1 0

='

='rt 20:16

rs 25:21

8
:3
1

Value too large
for 1-cyc multiply.

1 0

Ya
Ym
Yb

(a) The code fragments
below are to run on
the implementation with
the small-multiply by-
pass from Homework
3 and shown to the right.
For each code fragment,
indicate whether our
small-value bypass fea-
ture always eliminates
a stall, sometimes, or
never? Explain.

Eliminates stall on code below: © Always © Sometimes © Never

andi r3, r5, 0x3f

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

Eliminates stall on code below: © Always © Sometimes © Never

ori r3, r5, 0x63f

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

Eliminates stall on code below: © Always © Sometimes © Never

lbu r3, 0(r4)

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

Eliminates stall on code below: © Always © Sometimes © Never

lw r3, 0(r4)

mul r1, r2, r3

add r6, r6, r1

lw r10, 0(r6)

6

(b) In typical practice a company decides upon an ISA, and then makes multiple implementations of that
ISA. Let HI and LI be two implementations of ISA I, HI is a high-end system and LI is low-cost. Let ISA
E (for expensive) be an ISA designed for high-end systems, and ISA C (for cheap) be an ISA designed for
low-cost systems, and let HE and LC be their implementations. All three ISAs and all four implementations
were designed by skilled engineers with lots of resources.

Why might HE be better than HI and why might LC be better than LI? The same reason should apply to
both. The answer is related to the ISAs used for the implementations.

Even if LC is better than LI , why might a user still choose LI?

(c) Consider the preparation of a set of SPECcpu results. For each item below indicate who is responsible,
SPEC (the organization) or the tester. Also indicate what would be the problem if it were the other way
around. For example, if you answered that SPEC chooses the benchmarks, then explain the disadvantage of
having the tester choose the benchmarks.

Choose the benchmarks: © SPEC or © The Tester

Problem if it were the other way around:

Choose the benchmark input data: © SPEC or © The Tester

Problem if it were the other way around:

Choose the benchmark training data: © SPEC or © The Tester

Problem if it were the other way around:

Choose the compiler: © SPEC or © The Tester

Problem if it were the other way around:

Choose the compiler optimization flags: © SPEC or © The Tester

Problem if it were the other way around:

7

(d) The IA-32 ISA has been described as Intel’s golden handcuffs. Who slapped on those handcuffs? What
does the gold refer to? What do the handcuffs refer to? This was discussed in class, but it is okay to use
Web searches to answer this question.

The reason for these handcuffs is:

They are golden because:

They are handcuffs (a restriction) because:

(e) Appearing below are some hypothetical instructions. Indicate whether each instruction is a better can-
didate for a RISC ISA or a CISC ISA. Explain why.

Is the instruction below more © RISC or © CISC like? Explain.

addi r1, r2, 0x12345678

Is the instruction below more © RISC or © CISC like? Explain.

lw r1, (r2+r3) # Load r1 = Mem[r2 + r3]

Is the instruction below more © RISC or © CISC like? Explain.

bgt r1, r2, TARG # Branch if r1 < r2

Is the instruction below more © RISC or © CISC like? Explain.

add (r1), r2, (r3) # Mem[r1] = r2 + Mem[r3]

8

