
Material in This Set

Multicycle Pipeline Operations

Material in This Set

Typical long-latency instructions: mostly floating point

Pipelined v. non-pipelined execution units

FP hardware for the 5-stage MIPS pipeline.

Long-latency implications for hazards, dependencies, and exceptions.

Pipeline diagrams and computation iteration time and CPI.

-1 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -1

Practice Problems

Practice Problems

The problems below draw on material covered in this set.

Easier Problems

2016 FE p2b: Simple PED. Hardware for swc1 (one wire)

2015 FE p2b: Simple PED.

2012 FE p2: Show execution of code. Add bypass paths.

Medium Difficulty

2018 FE p3: Integrate comparison unit and FCC reg into FP pipeline.

2014 MT p2: Change pipe so instructions stall in ME to avoid a WF hazard.

2012 FE p1: Use FP multiply stages for integer multiply instructions.

-2 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -2

Multicycle Operations and Why they are Different

Multicycle Operations and Why they are Different

Multicycle Pipeline Operation:

An operation (usually arithmetic) that takes more than one or two cycles.

Examples, floating-point multiply and add.

Cycle 0 1 2 3 4 5 6 7 8

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

Six Cycles

Cycle 0 1 2 3 4 5 6 7 8

add.d f6, f8, f10 IF ID A1 A2 A3 A4 WF

Four Cycles

Note: The number of cycles needed depends on . . .

. . . the operation . . .

. . . and of course the implementation.

-3 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -3

Multicycle Operations and Why they are Different

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Life is Simple with a Five-Stage Pipeline! :-)

Every instruction goes through the same five stages in the same order.

There are no writeback structural hazards.

Registers are written in program order.

Cycle 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

xori r6, r4, 0baa IF ID EX ME WB

lw r8, 8(r9) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

Register being written: r1 r4 r6 r8

These are in program order.

-4 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -4

Multicycle Operations and Why they are Different

Five Stages are Feasible So Far Because

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Instructions need only one or two stages to execute.

One stage: add, xori, etc.

Two stages: lw, sh, etc.

-5 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -5

Multicycle Operations and Why they are Different

The End of Innocence

Unfortunately we must now set aside this simplicity and elegance.

Because floating-point operations . . .

. . . can’t feasibly be computed in one or two cycles.

The challenge is putting these units
in our pipeline.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

M6

A4A2A1

M3 M4M2 M5

A3

M1

-6 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -6

Multicycle Operations and Why they are Different

Possible implementation strategies:

• A simple pipeline with lots of stages and an expensive bypass network.

• A simple pipeline with lots of stages and large integer instruction latencies.

• A complex pipeline with low latency for integer instructions.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

M6

A4A2A1

M3 M4M2 M5

A3

M1

-7 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -7

Common Long-Latency Instructions

Common Long-Latency Instructions

Fastest (shortest—but still long—latency): Floating-Point Add, Subtract, Conversions

MIPS: add.d, sub.d, cvt.s.w (convert integer to float), etc.

Intermediate Speed: Multiply

MIPS: mul.d, mul.s.

Slowest Speed: Divide, Modulo, Square Root

MIPS: div.d, sqrt.d.

-8 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -8

Functional Units and Pipelining � Definitions

Functional Units and Pipelining

Implementations often balance cost and performance.

Consider an add operation that takes about 4 ns . . .

. . . and that can be split into four stages, A1, A2, A3, A4.

Definitions

Initiation Interval:

The number of cycles that a functional unit stage will need to perform an operation.

The initiation interval for all stages in the MIPS integer pipeline is 1 . . .

. . . and the initiation interval frequently used FP operations is usually 1.

Operation Latency:

The number of cycles needed to complete an operation.

That’s 1 for ALU operations, 4 for the addition above.

-9 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -9

Functional Units and Pipelining � Fully Pipelined

Highest Cost: Fully Pipelined Functional Unit

In a fully pipelined unit all stages have an initiation interval of 1.

Example, fully pipelined FP add:

Cycle 0 1 2 3 4 5 6 7

add.d f0, f2, f4 IF ID A1 A2 A3 A4 WF

add.d f6, f8, f10 IF ID A1 A2 A3 A4 WF

add.d f12, f14, f16 IF ID A1 A2 A3 A4 WF

The initiation interval of A1 to A4 must be 1.

The add operation latency is 4.

Typically addition and multiplication units are fully pipelined.

-10 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -10

Functional Units and Pipelining � Unpipelined Units

Low Cost: Unpipelined

In an unpipelined unit the initiation interval equals the operation latency.

Example, unpipelined FP add

Suppose A1 through A4 are very similar . . .

. . . and so one piece of hardware, A, can perform each stage’s operation.

Then the entire computation could be done by using A four times:

Cycle 0 1 2 3 4 5 6 7 8 9 10

add.d f0, f2, f4 IF ID A A A A WF

add.d f6, f8, f10 IF ID -------> A A A A WF

addi r1, r1, 8 IF -------> ID EX ME WB

The initiation interval of A is 4, the operation latency is 4.

Cost is 1
4 of fully pipelined version.

But even non-dependent consecutive FP add instructions stall.

Division and trigonometric operations are usually unpipelined.

-11 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -11

Functional Units and Pipelining � Multiple Unpipelined Units

Intermediate Cost: Multiple Unpipelined Functional Units

Two unpipelined FP add units, A and B.

Cycle 0 1 2 3 4 5 6 7 8 9 10

add.d f0, f2, f4 IF ID A A A A WF

add.d f6, f8, f10 IF ID B B B B WF

add.d f12, f14, f16 IF ID ----> A A A A WF

Initiation interval of both A and B are 4.

-12 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -12

Functional Units and Pipelining � Partially Pipelined

Intermediate Cost: Partially Pipelined Functional Units

A unit is partially pipelined if its stages have an initiation interval strictly greater than 1, and strictly less than the operation latency.

Example, partially pipelined add.

Consider an adder in which Aa performs either A1 or A2 . . .

. . . and Ab performs either A3 or A4.

Cycle 0 1 2 3 4 5 6 7 8 9 10

add.d f0, f2, f4 IF ID Aa Aa Ab Ab WF

add.d f6, f8, f10 IF ID -> Aa Aa Ab Ab WF

add.d f12, f14, f16 IF -> ID -> Aa Aa Ab Ab WF

Stages Aa and Ab each of an initiation interval of 2.

-13 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -13

Floating Point in Chapter-3 MIPS Implementation

Floating Point in Chapter-3 MIPS Implementation

Typical Classroom Example Floating Point Functional Units

• FP Add

Four stages, fully pipelined: Operation Latency 4, Initiation Interval 1.

Used for FP Add, FP Subtract, FP Comparisons, etc.

• FP Multiply

Six stages, fully pipelined: Operation Latency 6, Initiation Interval 1.

Used for FP Multiply.

• FP Divide

Twenty five cycles, unpipelined: Operation Latency 25, Initiation Interval 25.

-14 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -14

Classroom Floating-Point MIPS Pipeline

Classroom Floating-Point MIPS Pipeline

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0
1
2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode
dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

ID-stage signals
shown in purple.

=

format
immed

15:0

Example floating unit implementation main features:

Separate register file.

Number of stages vary depending on functional unit.

Floating-point writeback separate from integer writeback.

-15 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -15

Classroom Floating-Point MIPS Pipeline

Floating-Point Pipeline

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0
1
2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode
dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

ID-stage signals
shown in purple.

=

format
immed

15:0

-16 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -16

Classroom Floating-Point MIPS Pipeline

Floating-Point Pipeline

Example floating unit implementation notes:

Bypass paths not shown.

Paths to implement FPR → GFP not shown.

Paths for double FP loads and any FP stores (ldc1, sdc1, etc.) not shown.

Pipeline latches for we and fd may be part of reservation register (covered soon).

Use of register pairs for double operands ignored.

See Spr. 2003 HW 5, Prob. 4, https://www.ece.lsu.edu/ee4720/2003/hw05sol.pdf.

The divide functional unit is not shown.

-17 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -17

https://www.ece.lsu.edu/ee4720/2003/hw05sol.pdf

Hazards With Long-Latency Instructions in Classroom Pipeline � Structural Hazards

Hazards With Long-Latency Instructions in Classroom Pipeline

Structural Hazards

Functional Unit Structural Hazards

Because an instruction can occupy a functional unit (e.g., DIV) more than one cycle . . .

. . . a following instruction needing that unit may be stalled.

(Occurs when initiation interval greater than one.)

Register Write (WF-Stage) Structural Hazards

Because different units have different latencies . . .

. . . instructions that started at different times can finish at the same time . . .

. . . only one can write results (unless extra register file ports added).

-18 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -18

Hazards With Long-Latency Instructions in Classroom Pipeline � Data Hazards

Data Hazards

RAW Hazards

As with integer operations, result not ready in time.

With long-latency operations instructions may wait longer.

WAW Hazards

Occurs when two nearby instructions write same register . . .

. . . and second instruction finishes first.

WAR Hazards

Cannot occur in Chapter-3 pipeline because instructions start in order.

-19 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -19

Hazards With Long-Latency Instructions in Classroom Pipeline � Precise Exceptions

Precise Exceptions

A headache because an instruction can be ready to write . . .

. . . long before a preceding instruction raises an exception.

-20 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -20

Handling Functional Unit Structural Hazards

Handling Functional Unit Structural Hazards

Example, 6-cycle unpipelined divide.

Unless FU changed, instructions must be stalled to avoid hazard.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

div.d f0, f2, f4 IF ID DIV DIV DIV DIV DIV DIV WF

div.d f6, f8, f10 IF ID ------------------> DIV DIV DIV DIV DIV DIV WF

Hazard easily handled:

Units provide a ready-next-cycle signal to ID stage.

Instruction stalled if ready-next-cycle for needed unit is 0.

-21 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -21

Handling Functional Unit Structural Hazards

Eliminating Hazards

Provide more than one functional unit.

Example, provide two 6-cycle divide units, DVa and DVb.

Cycle 0 1 2 3 4 5 6 7 8 9

div.d f0, f2, f4 IF ID DVa DVa DVa DVa DVa DVa WF

div.d f6, f8, f10 IF ID DVb DVb DVb DVb DVb DVb WF

Pipeline functional unit.

Example, use 6-cycle, initiation interval 2, pipelined divide . . .

. . . and live with single stall cycle.

Cycle 0 1 2 3 4 5 6 7 8 9 10

div.d f0, f2, f4 IF ID DV0 DV0 DV1 DV1 DV2 DV2 WF

div.d f6, f8, f10 IF ID --> DV0 DV0 DV1 DV1 DV2 DV2 WF

-22 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -22

Handling Functional Unit Structural Hazards

Example (stall to avoid hazard in cycle 8)

Cycle 0 1 2 3 4 5 6 7 8 9

mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

addi r1, r1, 1 IF ID EX ME WB

add.d f6, f8, f10 IF ID --> A1 A2 A3 A4 WF

-23 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -23

Handling Functional Unit Structural Hazards

Method 1: Delay instruction in ID. (Used above.)

Include a shift register called a reservation register.

Each cycle the reservation register is shifted.

A 1 indicates a “reservation” to enter WF.

Bit position indicates time . . .

. . . with the LSB indicating two cycles later . . .

. . . the next bit indicating three cycles later . . .

. . . and so on.

The ID stage controller, based on the opcode of the instruction . . .

. . . knows the number of cycles before WF will be entered.

It checks the corresponding reservation register bit . . .

. . . if it’s 1 then IF and ID are stalled . . .

. . . if it’s 0 then the bit is set to 1 and the instruction proceeds.

If such a stall occurs the reservation register is still shifted . . .

. . . and so a 0 will eventually move into the bit position.

-24 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -24

Handling Functional Unit Structural Hazards

Method 2: Delay instructions ready to enter WF.

Each functional unit provides a signal . . .

. . . indicating when it has an instruction ready to enter WF.

One of those signals is chosen (using some method) . . .

. . . the corresponding instruction moves to WF . . .

. . . while the others are stalled.

-25 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -25

Handling Functional Unit Structural Hazards

Comparison of Method 1 and 2

Method 1 is easier to implement . . .

. . . since logic remains in one stage.

In contrast, logic for method 2 would span several stages . . .

. . . since stages back to IF might need to be stalled . . .

. . . and so critical paths would be long.

Method 2 is more flexible . . .

. . . since priority could be given to longer-latency instructions.

-26 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -26

Handling RAW Hazards

Handling RAW Hazards

The interlock mechanism for RAW hazards . . .

. . . must keep track of registers with pending writes . . .

. . . and use this information to stall instructions.

Consider, add.s f1, f2, f3.

Check if any uncompleted preceding instructions write f2 or f3.

If so, stall until register(s) written or can be bypassed to adder.

-27 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -27

Handling RAW Hazards

Possible RAW Interlock Implementations.

Brute Force: Check all following stages

As done for integer operations, check following stages . . .

. . . for pending write to register.

Each stage of every pipelined unit must be checked.

Too expensive.

Register file includes ready bit for each register.

Ready bit normally 1, indicating no pending writes (so value valid).

When instruction issued, bit set to 0 . . .

. . . when instruction completes and result written, set back to 1.

Instruction stalls if either operand’s ready bit is 0 . . .

. . . and cannot be bypassed.

-28 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -28

WAW Hazards

WAW Hazards

Example with 3-stage pipelined multiply and one-stage add, no ME.

Cycle 0 1 2 3 4 5

mul.s f0, f1, f2 IF ID M0 M1 M2 WF

add.s f0, f3, f4 IF ID A0 WF # Incorrect execution!!

-29 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -29

WAW Hazards

Handling WAW Hazards

The interlock mechanism for RAW hazards handles WAW hazards in which there is an intervening read.

Example with 3-stage pipelined multiply and one-stage add, no ME.

Cycle 0 1 2 3 4 5 6 7

mul.s f0, f1, f2 IF ID M0 M1 M2 WF

sub.s f5, f0, f6 IF ID -----> A0 WF

add.s f0, f3, f4 IF -----> ID A0 WF # No problem.

-30 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -30

WAW Hazards

Handling WAW Hazards

If there is no intervening write. . .

. . . and ISA insists that all faulting instructions raise exceptions. . .

. . . the WF can be suppressed by changing we to 0.

Cycle 0 1 2 3 4 5

mul.s f0, f1, f2 IF ID M0 M1 M2 WFx

add.s f0, f3, f4 IF ID A0 WF

If mul.s faulted the handler would be called in execution above.

For a less strict ISA instruction could be squashed earlier.

-31 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -31

WAW Hazards

WAR Hazards

Possible when register read delayed.

Can’t happen in five-stage MIPS because instructions

(1) read registers in ID

(2) pass through ID in program order

(3) and produce results only after leaving ID.

Consider:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11

mul.s f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 M6 M7 WF

add.s f1, f3, f4 IF ID A0 A1 A2 A3 WF

There would be a WAR hazard if addf wrote f1 before multf read it.

That can’t happen since multf would leave ID (with f1) as addf just enters ID.

-32 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -32

CPI and Multicycle Operations

CPI and Multicycle Operations

With long-latency ops, dependencies trickier . . .

. . . and structural hazards now present (in our implementations).

Finding CPI for a loop

As before, find a repeating pattern of iterations.

Look out for structural hazards.

-33 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -33

CPI and Multicycle Operations

Loop Example:

LOOP:

addi $t0, $t0, -1

mul.s $f2, $f2, $f1 # Note loop-carried dependency through $f2

bne $t0, $0 LOOP

lwc1 $f1, 4($t1)

Runs on implementation illustrated earlier . . .

. . . with a full set of floating-point bypass paths added.

All bypass paths for integer instructions shown.

What is the CPI during the execution of this loop?

-34 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -34

CPI and Multicycle Operations# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP: # First Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF ID -> EX ME WB

lwc1 $f1, 4($t1) IF -> ID EX ME WF

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP: # Second Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID -> M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF -> ID EX ME WB

lwc1 $f1, 4($t1) IF ID EX ME WF

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LOOP: # Third Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID ----> M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF ----> ID EX ME WB

lwc1 $f1, 4($t1) IF ID EX ME WF

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

LOOP: # Fourth Iteration

addi $t0, $t0, -1 IF ID EX ME WB

Note: Each iteration above starts differently.

First, Cycle 0: IF, addi; ID, etc. pre-loop instructions.

Second, Cycle 5: IF, addi; ID, lwc1; EX, bne; M3, mul.s.

Third, Cycle 10: IF, addi; ID, lwc1; EX, bne; M2, mul.s. (Similar, but different.)

-35 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -35

CPI and Multicycle Operations

Cycle 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

LOOP: # Third Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID ----> M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF ----> ID EX ME WB

lwc1 $f1, 4($t1) IF ID EX ME WF

Cycle 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

LOOP: # Fourth Iteration

addi $t0, $t0, -1 IF ID EX ME WB

mul.s $f2, $f2, $f1 IF ID ----> M1 M2 M3 M4 M5 M6 WF

bne $t0, $0 LOOP IF ----> ID EX ME WB

lwc1 $f1, 4($t1) IF ID EX ME WF

Cycle 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Third, Cycle 10: IF, addi; ID, lwc1; EX, bne; M2, mul.s.

Fourth, Cycle 16: IF, addi; ID, lwc1; EX, bne; M2, mul.s.

Since third and fourth start the same way, pattern will repeat.

CPI is
16− 10

4
= 1.5.

-36 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -36

Precise Exceptions

Precise Exceptions

Problem is registers written out of order . . .

. . . so some registers must be unwritten . . .

. . . so that when handler starts . . .

. . . it must seem as though . . .

. . . all instructions before faulting instructions executed . . .

. . . while no instructions after faulting instruction execute.

Cycle 0 1 2 3 4 5 6 7 8 9

mul.s f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 *M6* WF

add.s f1, f3, f4 IF ID A0 A1 A2 A3 WF

To do this either . . .

. . . add lots of stalls so instructions do finish in order . . .

. . . limit those instructions that can raise precise exceptions . . .

. . . or need to unexecute instructions.

The first option is fine for debugging, too slow otherwise.

The second option requires lots of hardware.

-37 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -37

Precise Exceptions � Method 1: Stall so that instructions complete in order.

Method 1: Stall so that instructions complete in order.

Cycle 0 1 2 3 4 5 6 7 8 9 10

mul.s f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 M6 WF

add.s f1, f3, f4 IF ID ---------> A0 A1 A2 A3 WF

This works, (WF in program order) but reduces performance.

-38 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -38

Precise Exceptions � Method 2: Early Detection of Exceptions

Method 2: Early Detection of Exceptions

FP unit raises exceptions early in computation . . .

. . . if computation passes that point, it will finish without exceptions.

For example, 26-cycle DIV unit may check operands by cycle 3 . . .

. . . if computation reaches cycle 4 there is no possibility of an exception.

Instructions only stall until preceding instruction checked for exceptions.

For example, suppose the FP multiply unit finds exceptions by end of M5.

Then at cycle 8 (below) addf can write (no chance of an exception in M6).

Cycle: 0 1 2 3 4 5 6 7 8 9

mul.s f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WF

add.s f1,f3,f4 IF ID -> A0 A1 A2 A3 WF

-39 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -39

Precise Exceptions � Method 3: Have precise and non-precise FP operations.

Method 3: Have precise and non-precise FP operations.

Let the names of imprecise instructions end in ip.

Second add.s doesn’t stall since an exception in mul.sip need not be precise.

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.s f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WF

add.s f1,f3,f4 IF ID ---------> A0 A1 A2 A3 WF

mul.sip f5,f6,f7 IF ---------> ID M0 M1 M2 M3 M4 M5 M6 WF

add.s f6,f8,f9 IF ID A0 A1 A2 A3 WF

-40 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -40

Precise Exceptions � Method 4: FP instructions precise when followed by special test instruction.

Method 4: FP instructions precise when followed by special test instruction.

Call the special instruction testexc.

No stalls (and imprecise exceptions) where testexc not used.

Cycle:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

mul.s IF ID M0 M1 M2 M3 M4 M5 M6 WF

testexc IF ID -----------------> EX ME WF

add.s IF -----------------> ID A0 A1 A2 A3 WF

mul.s IF ID M0 M1 M2 M3 M4 M5 M6 WF

add.s IF ID A0 A1 A2 A3 WF

-41 LSU EE 4720 Lecture Transparency. Formatted 10:24, 21 April 2020 from lsli09-TeXize. -41

	Material in This Set
	Practice Problems
	Multicycle Operations and Why they are Different
	Common Long-Latency Instructions
	Functional Units and Pipelining
	Definitions
	Fully Pipelined
	Unpipelined Units
	Multiple Unpipelined Units
	Partially Pipelined

	Floating Point in Chapter-3 MIPS Implementation
	Classroom Floating-Point MIPS Pipeline
	Hazards With Long-Latency Instructions in Classroom Pipeline
	Structural Hazards
	Data Hazards
	Precise Exceptions

	Handling Functional Unit Structural Hazards
	Handling RAW Hazards
	WAW Hazards
	CPI and Multicycle Operations
	Precise Exceptions
	Method 1: Stall so that instructions complete in order.
	Method 2: Early Detection of Exceptions
	Method 3: Have precise and non-precise FP operations.
	Method 4: FP instructions precise when followed by special test instruction.

