
LSU EE 4720 Homework 4 Solution Due: 1 April 2020

It’s up to all of us: r > 2 m ⇒ Re < 1 where r is the radius of the largest circle with you at the center
and containing only people in your household, and Re is the effective reproduction number, the number of
people infected by an infected person.

Problem 1: Appearing below is the code fragment from Homework 3.

Cycle 0 1 2 3 4 5 6

addi R2, r0, 0 IF ID EX ME WB

mul R1, R2, r3 IF ID EX ME WB

add r4, R2, R1 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6

(a) Does this code fragment look like it was compiled with optimization on?
If your answer is something like “yes, it could be part of optimized code” then explain why you think

it so and provide any missing context. (Do not change or re-arrange the three instructions above.)

If your answer is something like “no, it does not appear optimized” then show what the code would look
like after optimization. Hint: A correct answer can start with either “Yes it does” or “No it doesn’t”. The
“No” answer is straightforward.

No, because with constant propagation and folding none of the instructions are necessary. We know that r2 will be assigned

0, and then r1 and r4 will also be zero. Any uses of those registers in the same basic block can be replaced by zero. (See previous

answer.)

1

https://www.ece.lsu.edu/ee4720/

Problem 2: MIPS does not appear to have a muli instruction.

(a) Comment on the following:

MIPS has a mul instruction but does not have a muli instruction because, as the solution to Homework
2 shows, the additional hardware for muli (beyond that used for mul) would be too costly.

Is the statement above reasonable or unreasonable? Explain.

Unreasonable, because the connection to the lower input of the Y1 unit is from the lower ALU mux, which has a connection to

the immediate. Therefore, the implementation of the muli would only require changes to control logic.

(b) Show the encoding of MIPS instruction mul r1, r2, r3. Show all 32 bits of the instruction, divided
into fields (each field can be shown in the radix of your choice). (The MIPS ISA manuals are linked to the
course Web page. Instruction encodings are in Volume II.)

A quick lookup in the ISA manual reveals that the opcode is 1c16 and the Func field value is 2. As with most type-R instructions

the order of the assembly language arguments are rd, rs, rt. The sa field is—must be—zero.

MIPS R:

Opcode

0x1c

31 26

rs

2

25 21

rt

3

20 16

rd

1

15 11

sa

0

10 6

Func

0x2

4 0

(c) Some possible reasons that there is no muli instruction in MIPS is that either there are no Format-I
opcodes available (they are all used by other instructions) or that the few remaining opcodes are being kept
in reserve for a better instruction than a muli.

Based on the MIPS Architecture Manuals (they are linked to the course references page) how many
opcodes are available for new Format-I instructions? The easy way to solve this is to find the right table.
The hard way to solve this is to go through the 144 or so pages of instruction descriptions. Hint: Look in
volume I.

The following solution is based on the MIPS manuals linked to the course Web page, which are Revision 0.95 and describe MIPS

before Release 6.

Table A-2 shows the encoding of the Opcode field. Twelve entries in the table appear blank. Assuming they are supposed to

be blank, and are not a problem with either the PDF encoding of the manual or of the PDF viewer I am using, then there are 12

opcode slots available.

Assuming there is a PDF problem of some kind then the number of free opcodes are the number of entries in Table A-2 with

the symbol shown in the first row of Table A-1, the row for “Operations . . . reserved for future use” instructions.

2

Problem 3: Perhaps you saw this coming: Time to add muli to MIPS.

(a) Show how a Format-R muli instruction with a ten-bit immediate might be defined using unused fields
in the Format-R encoding. Make up your own function field value, but try to pick one that’s unused. (See
the previous problem.) Show how muli r1, r2, 43 might be encoded for your muli definition.

Table A-5 of the Revision 0.95 shows function field values used by the family of instructions that includes mul. The mul

instruction is in the first row of the table and the second row appears empty (see the gripe about the PDF manual from previous

problem’s solution). Lets reserve the second row for immediate-value versions of first-row instructions. So the function field value

for mul is 000 0102. So lets make the function field for muli 001 0102. The opcode will remain 1c16. To encode the 10-bit

immediate use bits 20:16 (the rt field) for the upper 5 bits and use bits 10:6 (the sa field) for the lower 5 bits. So to encode

4310 = 00 0010 10112 set the rt field to 000012 and the sa field to 010112 = b16.

MIPS R:

Opcode

0x1c

31 26

rs

2

25 21

rt

1

20 16

rd

1

15 11

sa

0xb

10 6

Func

0x2

4 0

(b) Modify the hardware below (there’s a copy on the next page) to implement this new instruction. The
modified hardware should provide the immediate needed by muli. Show datapath but not control logic. Of
course, any changes should not break existing instructions.

Pay attention to cost and performance. This can easily be solved by adding a mux in the ID stage.
Hint: The solution is not much more than a mux. Be sure to carefully label the inputs.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Y1 Y2

= mul

is load

a

b

a
*b

rt is src

STALL

mx mx
lx lx lx

1 0

='

='rt 20:16

rs 25:21

3

The SVG source for the diagram below is available at
https://www.ece.lsu.edu/ee4720/2020/hw03-p2.svg.

Solution appears below in green. Since no other instruction concatenates the rt and sa fields to extract an immediate, that

hardware had to be added. The lower input to the new ID-stage mux consists of those concatenated fields and also includes 6 zero

bits on the most-significant side. The resulting constant is 16 bits, the same size as ordinary immediate. The format immed block

sign-extends the value to 32 bits, which will have no effect for the muli immediate but is still needed for the other immediates.

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Y1 Y2

= mul

is load

a

b

a
*b

rt is src

STALL

mx mx
lx lx lx

1 0

='

='rt 20:16

rs 25:21

20:16

10:6

0
6

lsb

msb

fo
rm

a
t

im
m

e
d

4

https://www.ece.lsu.edu/ee4720/2020/hw03-p2.svg

	Problem 1
	Part char 97

	Problem 2
	Part char 97
	Part char 98
	Part char 99

	Problem 3
	Part char 97
	Part char 98

