LSU EE 4720 Homework 3 sowution Due: 30 March 2020

Please E-mail solutions of this assignment to koppel@ece.lsu.edu by the evening of the due date. PDF files
are preferred. These can be generated by scanning software that you might have installed with a multifunction
printer. A PDF can also be assembled from photos of a hand-completed copy. The disorganized homework
penalty will be ignored for the remainder of the semester (unless we return early) so an E-mail with multiple
image attachments will be accepted without penalty. Do not physically mail them to my office address, I will
not be able to pick them up.

Problem 1: Appearing below is the solution to Homework 2 with labels added to some wires, which is
followed by an execution of the code showing values on those labeled wires. The execution is based on the
code fragment shown plus nop instructions before the first instruction (addi) and after the last instructions

(nop).
ID FEF EX ME WB
NPC T 44& ALU
25:21 l —
+1 Addr Dataf+{rsv Mem
) 20:26 | adar Datal{rtvl | AL Port
,f} —— Addr
—Addr DIn F—
D D MD
|
J ,:F rtv In Out il
15:0{format
immed IMM 7 |
i 4 | ves
© W
Mem (‘Decode Ny | o dst @A astl
Port Datai R M —4 mx mx
Out — Ix Ix Ix
j rt is src
&
Cycle 0 1 2 3 4 5 6
addi r2, r0, O IF ID EX ME WB
mul R1, R2, 13 IF ID EX ME WB
add r4, R2, R1 IF 1D EX ME WB
Cycle 0 1 2 3 4 5 6
A 0 1 1
B 0 1 0
C 0 1 1
Cycle 0 1 2 3 4 5 6
D 0 1 0
E 1 1 1
F 0 0 0
Cycle 0 1 2 3 4 5 6
G 1 4
H 2 1 4
Cycle 0 1 2 3 4 5 6

https://www.ece.lsu.edu/ee4720/

(a) Refer to the table on the previous page for this problem. Notice that the value in the B row (above) in
cycle 1 is 0. According to the problem statement the instruction before addi is a nop.
Why would that value be 0 regardless of what instruction came before addi?

Short Answer: Because the rs register is r0, and the output of the El comparison unit is O when either input is O (even
if both Inputs are 0).

Explanation: The B signal i3 1 when the rs register of the instruction in ID is the same as the destination register of the
instruetion in EX. The rs register is the register specified by bits 25:21 if the instruetion, and is usually the frst source register
of the instruction when written in assembly language. In the code fragment above the rs register for the addi is r0 and the rs
register for the mul and add are r2. (Register r2 is the same as R2, upper case i used only for emphasis.) Depending on the
instruction the destination register might de in the rd fleld (most type R instructions), the rt fleld (many type 1) instructions, or an
implieit r31 (the jal instruction). It an instruction does not write any general purpose (integer) register, the destination regjister o
13 used.

The output of the comparison unit El is 1 when the two inputs (Which are 5-bIt quantities) are equal, with one exception: if
DOLN Inputs are zero the output is 0. The reason Tor the exception is that rO is Not 4 real register, meaning that an instruction with
T0 a5 4 souree (sueh as addi) does not need to wait for an instruction to write 0O (such as the nop before the addi).

Suppose the addi r2, r0, O were changed to addi r2, r7, 0. Why would the value in the B row still
be 07

Because the destination of & nop is 0 and 0 # 7.

ID FEF EX ME WB
— _ _

% ALU

25:21 l I=
+1 Addr Dataf+{rsv Mem
) 20:26 | addr Datal{rtv | | AL Port
,f} —— Addr
—Addr DIn F—
D D MD
| t | Out
J ,:k rtv n u L
15:0|format
immed IMM 7 |
vi] B vee
© (A) Ak P
Mem ("Decode) [Ny dst dst astl
Port Data| | r | M — mx mx
Out — Ix Ix Ix

&

(b) Appearing below is a different code fragment. Complete the table so that it shows the values on the
labeled wires.

The solution appears below. As a start 1o understanding the solution examine row G and H, these show the destination register
of the instruction in ID and ME, respectively. Row D is also straightforward, it is 1 when the instruction in EX i8 & mul.

To solve line E one needs to determine it the value of at least one of the operands of the instruction in EX i zero. This is
certainly false in cycle 3 when sub is in EX because r2 must be non-zero (\OOK af the ori '\T\SUUQUOH). But, r1 must be zero and
80 B is true in eycle 4. Because the multiplicand of the Tirst multiply is r1 the product, r3 must also be zero. Back in cycle 2, when
the ori is in EX, there is no way 1o tell it ré is zero, s0 the B value i3 Shown as ?.

Cycle 0 1 2 3 4 5 6 7
ori r2, r6, 7 IF D EX ME WB

sub rl, r2, r2 IF ID EX ME WB

mul r3, r8, ril IF ID EX ME WB

mul r5, r3, rd IF 1D EX ME WB
Cycle 0 1 2 3 4 5 6 ## SOLUTION
A 0 1 1 1

B 0 1 0 1

C 0 1 1 1

Cycle 0 1 2 3 4 5 6

D 0 0 1 1

E ? 0 1 1

F 0 0 0

Cycle 0 1 2 3 4 5 6

G 1 3 5

H 2 1 3 5

Cycle 0 1 2 3 4 5 6

(c) Appearing below are completed tables, but without a code fragment. Show a code fragment that could
have produced those table values.

The originally assigned problem contained an error which made it difficult to solve. Shown below is the
originally table, followed by the intended table. The solution uses the intended table.

As originally assigned. Contains an error in F at cycle 3.
Cycle 0 1 2 3 4 5 6 7
A 0 1 0 1

B 0 1 1 0

C 0 1 1 1

Cycle 0 1 2 3 4 5 6 7
D 0 1 0 0

E 0 0 0 0

F 0 0 0 0

Cycle 0 1 2 3 4 5 6 7
G 3 4 8

H 2 3 4 8
Cycle 0 1 2 3 4 5 6 7
Intended problem.

Cycle 0 1 2 3 4 5 6 7
A 0 1 0 1

B 0 1 1 0

C 0 1 1 1

Cycle 0 1 2 3 4 5 6 7
D 0 1 0 0 0

E 0 0 0 0

F 0 1 0 0 0

Cycle 0 1 2 3 4 5 6 7
G 3 4 8

H 2 3 4 8
Cycle 0 1 2 3 4 5 6 7

solution appears below. Lower case characters are used for register numbers and instructions whien are one of several pOSS\D\Q
correet answers. For Qxamp\te, the first instruction orI, could have been any type L instruction that wrote a register, sueh a8 addI
and xorI. The destination of orI must be r2 (&Y\G 80 1T is written as RQ) DUt the Nrst source could be any register.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8
orl r2, r2, 7 IF ID EX ME WB

MUL R3, R2, 12 IF ID EX ME WB

addI r4, R3, 9 IF ID -> EX ME WB

sub R8, rl10, R4 IF -> ID EX ME WB
Cycle 0 1 2 3 4 5 6 7 8

Problem 2: Appearing below and on the next page is the solution to Homework 2 Problem 1. In this
problem add hardware to handle a different and less special multiplication special case. Suppose that the
middle output of the Y1 stage of the multiplier held the correct product whenever the high 24 bits of its b
input are zero. For example, when b is 1, 5, or 255. Call such values small. In all cases the correct product
appears at the output of Y2.

Note: All outputs of Y1 arrive with zero slack, even the center output with the small b special case.
That means that nothing can be done with these values until the next clock cycle, at least without reducing
the clock frequency.

Addr Data
120:26 f A i

Data;

—{Addr D In

15;0[format
[|immed
e b
Addr b
port.
— —{dst dst dst
Port pata dest.reg T e mx

out o Ix Ix

(@) Add hardware to bypass the product to the ALU and to the rtv mux when b is small. (There is a larger
diagram on the next page.) The bypass should allow the first code fragment below to execute without a
stall.

(b) Add control logic to suppress the stall when it is possible to bypass.

In the first code fragment below the stall is avoided because the b value (which is the rtv) is small, in
the second it is too large.

Cycle 01 2 3 4 5 6 7
addi ri, r0, 23 IF ID EX ME WB

mul r2, r3, ril IF ID EX ME WB

sub r4, r2, rb IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7
addi ri1, r0O, 300 IF ID EX ME WB

mul r2, r3, ril IF ID EX ME WB

sub r4, r2, rb5 IF ID -> EX ME WB

e Make sure that the changes don’t break existing instructions.
e As always avoid costly solutions.

e As always pay attention to critical path.

The SVG source for the illustration below is at https://www.ece.lsu.edu/ee4720/2020/hw03-p2.svg.
It can be edited using Inkscape or any other SVG editor, or (not recommended) a text editor.

Solution appears below with part (a), the datapath, in green and part (b), the control logie, in purple.

A path is provided from the middle Y1 output to the ME-to-EX bypass paths and uses a new multiplexor which selacts batwaen
ME.ALU and ME. Ym. Pipeline lateh register ME.mx is used as the select signal for this mux. Note that the mux does not afect the
path from ME. ALU to the Mem Port Addr input. That's important because we always assume that the Mem Port Addr input and D
Out are on the eritical path and so anything that inereases the length (time) of the path will slow the clock frequency.

For part (D) we need to suppress the stall it the b input to the multiplier 1s < 256. For unsigned values that is true if bits 8
10 31 are zero, which is easily ehecked by an NOR gate. The logie that is shown checks whether the value is not small (> 256), and
uses that as an additional condition for the stall. (So the multiply-dependence stall will not be asserted it the value is small.)

Alternative Solution: Rather than adding a new multiplexor, the ME. Ym signal could have been connected 10 the three
EX-stage muxen. This would have cost more and made the control logic more complicated, but it possibly would be Taster, depending
on how the five-Input multiplexors were synthesized. Sueh solutions received full eredit, even without the control logie for the EX-stage
multiplexors.

msb | 29:/26
Isb |
IF ID = EX ME WB
ox
NPC | i} ALUF—
25:21 L— A
+1 Addr Data rsv Mem |||
T 20:26 [4r Data v | _} ALU Port
—— . {Addr
PC Addr D n] D D MD
i N rt In Out
D— v n u 5
20 15:0| format
304 42 immed IMM |
msb Isb . aYl — Ya y2 2
Addr B w %
Mem (Decode) dst Z dst dst |+
Port Datal | r | M —f mx mx
Out —f Ix Ix Ix

Value too large
for 1-cyc multiply.
IS Ioad rs 2521 I_

:' rtis src}

https://www.ece.lsu.edu/ee4720/2020/hw03-p2.svg

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2
	Part char 97
	Part char 98

