
LSU EE 4720 Homework 2 Due: 9 March 2020

Problem 1: The illustration below (and on the next page, there’s no need to squint) shows our 5-stage
MIPS implementation with some new hardware including: a Y1 unit in EX and a Y2 unit in ME. These are
the two stages of a pipelined integer multiplication unit. They are to be used to implement a MIPS32 mul

instruction (not to be confused with a MIPS-I mult instruction). The mul instruction executes as you would
expect it to, for example mul r1, r2, r3 writes r1 with the product of r2 and r3. Because of the need to
reduce (add together) all of the partial products, the multiplication hardware spans two stages, in contrast
to an integer add which is one in one stage (in the ALU of course). Note: The mult instruction was the
subject of 2013 Homework 4.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Y1 Y2

= mul

is load

a

b

a
*b

rt is src STALL

Here is how mul should execute:

Cycle 0 1 2 3 4 5 6 7 8

add R1, r2, r3 IF ID EX ME WB

mul r4, R1, r5 IF ID Y1 Y2 WB

mul R6, r7, R1 IF ID Y1 Y2 WB

sub r8, R6, r9 IF ID -> EX ME WB

Cycle 0 1 2 3 4 5 6 7 8

First of all, notice that there is no problem over-
lapping the two multiplies. Also notice that there is no
problem bypassing a value to the source of a multiply.

(a) Add datapath hardware so that the multiply can execute as shown above.

• Assume that the Y1 and Y2 units each have about two multiplexor delays of slack. (Meaning if the
path into the inputs of Y1 or out of the output of Y2 passes through more than two multiplexors the
clock period would have to be increased, and we don’t want that.)

• Pay attention to cost. Assume that the cost of one pipeline latch bit is the same as two multiplexor
bits. Make other reasonable cost assumptions.

• Do not lengthen the critical path.

• Make sure that the code fragment above will execute as shown.

• Don’t break other instructions.

(b) Add control logic for the existing WB-stage multiplexor and for any new multiplexors you might have
added. Hint: This problem is easy, especially if you use two-input muxen.

• Use a pipeline execution diagram (such as the one above) to make sure that the value computed for
a multiplexor select signal is the correct value when it is used, perhaps several stages later.

(c) At the lower-right is a big OR gate, its output is labeled STALL. Add an input to that OR gate which will
be one when an instruction must stall due to a dependency with a mul. The sub from the execution above
suffers such a stall.

Use next page for solution.

1

https://www.ece.lsu.edu/ee4720/

(Not interesting enough? There is another problem on the next page!) Use this page for the solution or
download illustration Inkscape SVG source from https://www.ece.lsu.edu/ee4720/2020/hw02-p1.svg

and use that one way or another to prepare a solution.

format
immed

IR

Addr25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data
Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Y1 Y2

= mul

is load

a

b
a
*b

rt is src STALL

2

https://www.ece.lsu.edu/ee4720/2020/hw02-p1.svg

Problem 2: Though two stages (Y1 and Y2) may be necessary to compute the product of arbitrary 32-bit
signed integers, there are special cases that can be computed in less time, for example when either operand
is zero or one.

If the Y units compute the product then it doesn’t matter what operation the ALU is set to, but to
handle special case(s) suppose that the control logic set the ALU operation to bitwise AND when decoding
a mul instruction. In that case the output of the ALU would be correct for some multiplication operations
and so the product would be ready in time to bypass to the next instruction. Add control logic to detect
such situations and suppress the stall when present. Don’t design the logic to set the ALU operation itself,
we’ll leave that to the Magic Cloud [tm].

3

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2

