
LSU EE 4720 Homework 3 Solution Due: 20 February 2019

Before solving the branch hardware problem below it might be helpful to look at 2016 Homework 2.

Problem 1: The code below should suffer a stall on the illustrated implementation due to a dependency
between the addi and bne instructions. The stall can be avoided by scheduling the loop, but lets consider a
hardware solution for code fragments like this in which an addi rX, rY, IMM is followed by a bne rX, r0,

T or by a beq rX, r0, T.

LOOP:

addi r3, r3, -1

bne r3, r0, LOOP

lw r1, 4(r1)

One way to avoid the stall (which would work for more than just the cases outlined above) would be
to have the ALU generate an =0 signal which, if the dependencies were right, could be used by the branch
hardware. Alas, the ALU people are on vacation, so lets try something else.

As alert students may have realized by now, all the branch hardware has to do is check whether rY ==

-IMM, which is r3 == 1 in the example. The comparison itself can be done using the existing comparison
logic. The challenge is delivering the operands to that logic at the right time.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Attention students who have forgotten how to use a pencil (or never learned): An Inkscape SVG version of
the implementation can be found at https://www.ece.lsu.edu/ee4720/2019/mpipei3.svg.

Solution on next page.

1

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/2019/mpipei3.svg

format
immed

IR

Addr
25:21

IF

ID EX

WB

ME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

opc

31:26

msb

b
n
e

='

addi

msb

BY

0 1

neg

w-1:0w-1:0

20:16

25:21
rs

rt

20:16

rs

25:21

31:0

w32

32-w

15:w

To branch

control

logic.

a
d
d
i

rt is r0

Immediate is in range -1

to -2w inclusive.

rsv

w-1:0w-1:0
31:0

31:w

(a) Add hardware to the implementation above to deliver the correct operands to the comparison unit so
code fragments like the one above can execute without a stall.

• Pay attention to cost, including the number of bits in each wire used. (For example, don’t add a
second comparison unit.)

• The changes should not prevent other code from executing correctly. (For example, a branch such as
beq r1,r2, T should execute correctly.)

• Don’t overlook that rX and rY are not necessarily the same register.

Solution appears above in blue. Note that the rs value from the addi is obtained from the register file using a 5-bit mux to
replace the branch’s rs with that of the addi. A more costly alternative would be to bypass the entire 32-bit value EX.rsv. Also
note that the immediate value from the EX stage is being used, because that’s where the addi will be.

(b) Add control logic to generate a BY signal which is set to logic 1 when the branch can use the bypass. The
control logic must detect that the correct instructions (including the registers) are present.

Solution appears above in green. The logic checks that there is a bne in ID, that the branch’s rt register is zero, that the
branch’s rs register matches the addi destination, and that there is an addi in the EX stage.

(c) If the design above was done correctly the highest cost part is the logic handling the immediate. Show
how the cost of that logic can be reduced while still retaining most (but not all) of the benefits of the full-cost
design. Your argument should include examples of “typical” code. (Assume [actually assert] that your code
samples are typical [reflects what is running by users most of the time]. Later in the semester we’ll remove
the scare-quotes from “typical”.)

Solution appears above in purple. It is reasonable to expect that—I assert that!!—many loops will have an addi/bne instruction
sequence like the one above in which the immediate value is small, perhaps just -1. Suppose that the immediate fits in w bits and is

2

negative. Then the negation logic need handle only w bits and the mux going into the comparison unit would only need to provide
the w least significant bits. The remaining 32−w bits would come from the rt value, which must be zero. The control logic needs
to check whether the immediate fits in w bits, that is done by the purple AND gate which examines bits 15 : w of the immediate.
(There is no need to examine bits 31:0 since they are all zeros or all ones.)

The least expensive option would be to design the hardware to work only with an immediate value of -1. In that case the
negation logic would no longer be necessary since we know that the result can only be 1.

3

