Name Solution

Computer Architecture

LSUEE 4720

Final Examination

1 May 2019, 12:30-14:30 CDT

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5

Aliag Before Exam Total

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: (22 pts) Notice that the execution of the code fragment below suffers two stalls when executing
on our 2-way superscalar MIPS implementation. The add stalls due to a dependence with or and the sw
stalls due to a dependence with add. The MIPS implementation has three unconnected logic blocks that
may be useful. Each must be connected to the opcode and func of the instruction in the appropriate slot.
The output of the is 1 if the instruction is an or. The output of is 1 if the instruction uses

the rs register as a source, likewise for | uses rt |.

Cycle 01 2 3 4 5 6 7 8
or rl, r2, r0 IF ID EX ME WB

add r3, r1, r4d IF ID -> EX ME WB

sw r3, 4(r6) IF -> ID —-—--> EX ME WB
addi r6, r6, 8 IF -> ID ----> EX ME WB

(a) In the execution below the sw no longer stalls for r3. Add a bypass path that can be used by sw to get
the r3 value in the execution below but not for other cases.

MAdd bypass path for r3 so sw executes as shown. MLabel the path “Part a”, and do not add unneeded
bypass paths.

Solution appears in blue (several pages ahead). The sw needs the value of r3 written by the add. A Dypass path was added to the
rtv mux in the EX stage, the path connaects to the slot 1 instruction in the ME stage. As can be seen from the execution below the
add 18 in slot 1 and when the swis in EX (in ¢ycle 4) the add is in ME, and 5o it can use the added bypass path.

Cycle 01 2 3 45 6 7 8
or rl, r2, r0 IF ID EX ME WB

add r3, rl, r4 IF ID -> EX ME VB

sw r3, 4(r6) IF -> ID EX ME WB

addi r6, r6, 8 IF -> ID EX ME WB

(b) The add stalls due to the dependence with or carried by r1. Add control logic that detects such a
dependence and connect it to the Stall ID OR gate at the lower right. The output of the logic should be 1
for any true dependence between two instructions in a group.

E{Provide a stall signal when there is a dependence between the two instructions in ID.

Solution appears in green on the diagram a page or two ahead. The El COMPArison units eneck whether the destination of the
instruction in slot 0 matehes the rs or rt register of the instruetion in slot 1. The logic checks whether the rs and rt nelds
0T the SI0T-1 INSTruction Specity sources. (m many ¢lassroom examples it is assumed that every instruction uses rs as 4 source, nere
We are being more QMQTU\.)

(¢) Notice that because the second operand is r0, the or just copies the value in r2 to r1. Therefore the
add could have used r2 instead of r1 and avoided the stall. Design hardware to perform such substitutions.
The hardware, including control logic, should detect when an or is used as a copy (as above) and if so avoid
the stall and deliver the correct source operand to the slot-1 instruction.

Cycle 0 1 2 3 4 5
or rl, r2, r0 IF ID EX ME WB
add r3, rl, r4d IF ID EX ME WB
sw r3, 4(r6) IF ID EX ME WB
addi r6, r6, 8 IF ID EX ME WB

MDetect the substitution opportunity and Msuppress the Stall ID signal (from the previous part).
B{Make sure the slot-1 instruction uses the correct value Mand that both instructions execute correctly.
MOf course, pay attention to cost. Nothing added for this problem should touch 32 bits.

Solution appears & page or two ahead in purple. The logie at the lower left checks for & slot-0 or using r0 as the rt operand. If
sueh a copy is found and if the rs source of the slot-1 instruction uses or destination the stall is SUPPYQSSQG and the rs FQg\SlQT

number of the slot 1 instruction is substituted. The register number is 5 DIts, while the value is 32 DItS, 80 it 18 Tar less expensive
0 substitute the number than the value.

(d) The following is a bonus question that did not appear on the original ezam. Bonus for whom you ask?
Definitely a bonus for those who took the class in the Spring 2019 semester and took a look at the posted
exam. Those (you) will have an opportunity to make connections between concepts learned in the class and
that will provide a deeper understanding and longer retention. Yes, the substitution hardware eliminates
a stall. Suppose that r2 had to be copied into ri. Provide an argument that substitution hardware is
a waste of resources, illustrate with an example. Provide another argument—also with an example—that
substitution hardware eliminates a stall that cannot be eliminated in another way. Whether substitution
is a good idea will depend on whether the example illustrating its utility is representative of realistically
compiled actual code.

B{Argument against substitution hardware. MCode example.

The substitution hardware is not needed if the compiler can use the source regjster of the substitution instruction. For the code
sample above the compiler would emit add r3, r2, r4, eliminating the dependence. See the code below. (It is always better to
avoid 4 stall using a compiler optimization than by hardware ehanges.)

Cycle 0 1 2 3 4 5 # SOLUTION. No stall, no costly hardware needed!
or rl, r2, r0 IF ID EX ME WB

add r3, r2, r4d IF ID EX ME WB # Replacement for add r3, rl, r4.

sw r3, 4(r6) IF ID EX ME WB

addi r6, r6, 8 IF ID EX ME WB

MArgument for substitution hardware. @Code example.

The compiler cannot easily perform substitution when the two instructions are in different basic blocks. For example, in the code
Delow the compiler cannot just replace add r3, rl, r4 with add r3, r2, r4 because that would not be correct it the bne
were not taken. This is & weak example for the substitution hardware because the compiler could prepare two code sequences, both
containing the add, sw, and addi instructions.

SOLUTION

bne r8, r9 TARG # If branch taken add uses rl, if not taken r2.
nop

or rl, r2, r0

TARG:

add r3, rl, r4d

sw r3, 4(r6)

addi r6, r6, 8

(A Dasic block 18 & sequence of instruction that can only have a control transfer KSUQT\ as a DFQY\QT\X at the end, and whieh can only
nave a braneh label \\QDQ\S TARG and LOOP are frequently used in Q\&SS\ at the beginning. A basic block always starts with the first
instruetion and always ends with the last 'mstruet'\on.)

Solution 1o hardware questions appears Helow. A discussion of the solution appears on prior pages.

260 15:0
IF il o ID EX ME
ol |~
npc - Register File 3 [alu®
252 Addr Data |—{rsv° I
20:16 [
/ Addr Data [rtv° it alu® P Mem
25:21 (1,|- Addr Data —{rsv! | il Port DL md
> PC 2016 A Addr Data —{rtv! |+ W_Parta D addr Addr Out g
[[RN ﬁ rtv D In
T £ T E T, »
2o %o i
[— H-H . .
15:0 1, alu alu
Addr - II Immed Il imm?© i
Mem 10 II Immed Il immlJ 0_?
Port ir0 Bl
ir (et o) 0 Q@ 0 0
{ .) t t t
Data E/AE[1 Dest. reg ds X ds . ds)
Out Ir {Dest. reg) dst dst dst
slot 0
slot 1
~ o
s kS
0 0
[t 20:16 — Slo\tj rt uses slot 0 dest.
Stall ID
H(uses rt) L/ @7
Slot 1 rs uses slot 0 dest.
rs 25:21 A
R —(uses rs) J 4)
kS
1%
=0or
—(uses rt) o |)
rt 20:16 . Instruction in slot O copies rs to dest.
SOLUTION: Use this execution to help in understanding the solution.
Cycle 0 1 2 3 4 5

or rl, r2, r0 IF ID EX ME WB
add r3, r1, r4d IF ID EX ME WB

sw r3, 4(r6) IF ID EX ME WB
addi r6, r6, 8 IF ID EX ME WB
Cycle 0 1 2 3 4 5

Problem 2: (22 pts) Appearing below is our MIPS FP pipeline with the comparison units added.
(@) Show the execution of the following fragment on this hardware.
E{Show execution up to second fetch of 1wc1l. MPay attention to dependencies, including the FP condition.

Solution appears below. The second feteh of Twcl is shown using statie instruction order. Note thaf c.1t.s depends on add.s
£2 (carried by £2) and that belt depends on c.1t. s (carried by fcc).

SOLUTION
Cycle 01 2 3 4 5 6 7 8 9 1011 12 13 14
LOOP:

lwcl £1, 0(rl) IF ID EX ME WF IF

add.s f2, f1, f2 IF ID -> Al A2 A3 A4 WF

add.s f4, f1, £3 IF -> ID Al A2 A3 A4 WF

c.lt.s £2, f6 IF ID ----> C1 C2 WF

bcit LOOP IF ----> ID ----> EX ME WB
addi ri, ri, 4 IF -——-> ID EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 1011 12 13 14

swel £2, 4(rl)
and rl, rl, r9

(b) Notice that there are two circled letters (in blue) in the lower part of the diagram. For each letter provide
a code fragment that causes the labeled wire to go to logic 1.

B(Code fragment that makes A logic 1.
E{Show its execution and Efindicato cycle at which A is 1.

Solution appears below. Wire AWwill be 1 in eycle 3, that's when the 1wcl is in ID while the add is in A2. The 1wcl must stall
one cycle 1o avoid & WE structural hazard in cycele 6.

SOLUTION
Cycle 0 1 2 3 4 5 6 7
add.s f1, f2, f3 1IF ID A1l A2 A3 A4 WF
xor rl, r2, r3 IF ID EX ME WB
lwcl f4, 0(r4d) IF ID -> EW ME WF
Cycle 01 2 3 4 5 6 7

MCode fragment that makes B logic 1.
MShow its execution and Efindicate cycle at which B is 1.

Solution appears below. Wire B will be 1 in cyeles 2 and 3, that's when bclt has to wait Tor the comparison result to reach the
FCC.

SOLUTION
Cycle 01 2 3 4 5 6 7
c.lt.s f0, £f1 1IF ID C1 C2 WF

bclt TARG IF ID -———> EX ME WB

ID

25:21

Int Reg File

20:16

Addr
Addr

Addr Dln

15:0

format

DataH

DataH

immed

(Decode)

NPC

rsv

rtv

IMM

dst

EX

ALU

rtv

dst

ME

ALU

Mem
Port
Addr

D D H
In Out

MD

dst

(dest. reg)

WB

FCC

15,11

FP Reg File

To branch
control
logic.

20:16

Addr
Addr

Data
Data

Addr

WE

D In

|
I

|
I

cmp

fsv
ftv

fim

well

{ uses FP mul)
(decode)

we
fd

_dest. req)

|
=
©

|
=
| =

H
N

voON
g
N

¢

| Jdwd

-

2'd0 xw

we

— FPload)

FP branch

——/uses FP add)

56

Problem 3: (21 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on two systems, each with a different branch
predictor. All systems use a 2'? entry BHT. One system has a bimodal predictor and one system has a local
predictor with an 8-outcome local history.

Branch B1 has a repeating pattern, two repetitions are shown. Branch B2 repeatedly and randomly emits
three sequences, a, b, and c. Sequence a is NT, sequence b is NNNTT (ﬁve outcomes), and sequence c is
NNNN NTTT (eight outcomes). After finishing one sequence, a new one is started. Sequence a is chosen with
probability .4, sequence b with probability .5, and ¢ with probability .1.

Here are some examples of B2 outcomes, with spaces placed between the sequences for clarity. Example 1:
NT NNNTT NT NNNNNTTT (that’s a, b, a, ¢). Example 2: NNNNNTTT NT NT NNNTT NNNTT(that% C7a,a,b,b)

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T NN NNTT T NN NN TT
B2: (a, p=.4): NT (b, p=.5): NNNT T (c, p=.1): NNNN NTTT

B(What is the accuracy of the bimodal predictor on branch B1?

SOLUTION WORK
0 1 0 0 0 0 1 2 3 2 1 0 0 1 2 <- 2-bit counter values
B1: T NN NN T T T NN N NTT
X X X X X X X <- Prediction outcomes
—————————————————————— <- First occurrence repeating pattern.

Short answer: %, 8ee WOrk above.

Explanation: The line just below SOLUTION WORK (QDO\IQ) SNOWS 2-DIT counter values for B1, assuming thal the counter starts at
7ero. The prediction outeomes are shown below the branen outeomes. To compute the prediction ratio we need to use 4 repeating

pattern. Such a pattern is underlined. Note that the counter value at the start and end is the same and that the underlined part

QOTTQSPOI\GS 10 2 set of \”QPQ&UT\g branch outeomes. The PTQ(NQUOT\ aceuracy is @ = %

B(What is the accuracy of the local predictor on branch B1?

The pattern can easily it the 8-outeome local Nistory, so the aceuracy is 100%.

B(What is the accuracy of the local predictor on branch B2?

First, 1ets number the outcomes on each pattern:

a: 01
NT

b: 0123 4
NNNT T

c: 0123 4567
NNNN NTTT

Start by considering the prediction of the Tirst outeome of each of the three patterns. Then because one of the three patterns has
Just ninished the local history at this point will be either ***x**TNT, **TNNNTT, or NNNNNTTT, where the * can be either N or
T. The first outcome of all three are N and 5o the PHT entries for all the local histories will be zero (MIQY Warmup) and 8o the Tirst
outcome of all three patterns will be predicted correctly (assum'mg that the local histories only occur at the beginning, which is easy
10 verity). After the Tirst outcome Is predicted the local histories will De one of #***TNTN, *TNNNTTN, or NNNNTTTN. If pattern
a l§ oceurring the next outeome is T, otherwise N. Pattern a occurs with probability .4-and s0 it is more likely that an N oceurs.
The PHT entries Tor the local histories are more likely to be 0 or 1, but i's NOT certain because 1t is possible that there are two
consecutive occurrences of a. S0 Tor pattern a the rst outcome is predicted with 100% accuracy and the second outeome at a lower
aceuracy, whieh can be approximated as 50% and which can be solved exactly using o Markov chain.

IT outcome 1, the second outcome using the number above, is N then outcome 2 will be predicted with 100% aceuracy because it is
always N. That is the local histories ***TNTNN, TNNNTTNN, NNNTTTNN only appear when the next outeome is N and so the PHT
entries will reach zero after warmup. Outcome 3 will be predicted T nearly 100% of the time bHecause b is mueh more likely than c.
Outeomes 4 and later will be predicted perfectly because they are unambiguous.

Hare is the number of correct predictions for each pattern: a, 1 +0.5=1.5b1+05+1+1+1=4.5and c=1+ 0.5+
14+0+1+1+4141=6.5 Theaccuracy during ais 42 = .75, during bis %> = .9, and during c is &2 = .8125. To
compute the overall prediction accuracy we need to weight these by how frequently they oceur. That is:

4x15+.5x45+.1x6.5
4x2+5x5+.1x%x8

= .853659

MWha‘u is the accuracy of the bimodal predictor on branch B27

The problem Is solved by first considering the effect that each pattern has on the 2-bit counter. Consider pattern b. It starts with
three N's guaranteeing that the counter will be zero when the first T is predicted, and that the counter will be 2 after the second
T. Similarly, the counter will be 3 after sequence ¢ completes. Unless the counter is zero, pattern a does not change the counter.
Therefore, at the Start of a sequence the counter Will be either 2 or 3. 1t Will be 2 with probability P(k = 2) = w25 = 2 and 3

with probavility P(k = 3) = ?11 = &, where P(k =) Is the probability that the 2-bit counter is z. Let P(a|k) denote the
prediction aceuracy during pattern a given that the 2-bit counter value is & and remember that k£ € {2,3 }. Then P(al2) =0,
P(a|3) = 1, P(b[2) = 2, P(b|3) = £, P(c[2) = 2, and P(c|3) = 5. The probabilities need to be properly combined.

First,

5 11
P(/|a) = P(a|2)P(k = 2) + P(al3)P(k = 3) = 0 x 2 + =,
where P(v/|a) s the prediction aceuracy during pattern a. Similarly, P(v[b) = 25 +11 = Hoang P(/[c) = 25 +41 = 28

Each pattern’s probability needs to be weighted by how often the pattern oceurs. Pattern a has a respectable probability of .4
but only two outeomes, so its relative contribution is .4 x 2. The relative contribution of patterns b and c are .5 x 5 and
.1 x 8.1 we arrived at some random time and waited for the next B2 execution the probability of B2 being in pattern a would be

AX2 — 8 ~
AX2+.5x5+.1x8 — 4.1~ -195.

S0 the overall branch pradiction ratio for B2 s

P(V/|a)4 x 2+ P(V/]b).5 x5+ P(V]c).1 x 8
A4x24+5x5+.1x%x8

44

123 3577

P(/[B2) =

(b) Appearing below is a diagram of our global predictor. Notice that the GHR is not updated until the
branch resolves. Modify the predictor so that the GHR is updated when the branch is being predicted (in
IF) using the predicted outcome. When the branch resolves check whether the prediction was correct, and
if not (if it was mispredicted) write the correct history into the GHR.

The following is interesting background material omitted from the original exam. The importance of updating
the GHR using the predicted outcome increases with the number of post-branch instructions that are in the
pipeline at the time a branch resolves. Consider our five-stage pipeline with branches resolving in ME. In
that case there are just three post-branch instructions. For an 8-way superscalar pipeline there would be
3 x 8 = 24 instructions. One or more of those 24 instructions could itself be a branch. In the unmodified
design below those branches would have been predicted with a GHR that lacked the outcome of the resolving
branch and those that followed. The problem is much greater in dynamically scheduled systems where over
100 instructions can be in flight. For that reason global-like predictors in dynamically scheduled systems use
designs like the one requested for this problem.

MAdd hardware to detect whether the resolving branch has been mispredicted.

MDuring prediction write GHR based on prediction, Mduring resolve apply corrected GHR if branch
mispredicted.

Solution appears below in biue. The mux at the input to the GHR selects either an updated global history Tor the branen in IF (WmQh
we hope to be the frequent Q&SQ) or 4 corrected global history for the branch in ME (Q\SO identified as reso]ve). The latter case is
only used it the branch is mispredicted, which is determined by XORIng the predicted and resotved outeomes (W they are diferent
the result is 1) and also making sure that the instruction in ME is a branch.

- icti SSAAS, 2504
Predictor Prediction TS Sw SR
: > PC S8 |S858s
Hardware in Black 2@ 3D PLo
gv | |[2f g3
o PC | %
Solution in Blue: BHT §2
In IF: 15:2 S 8
- pu
Update GHR a d H 1s Branch | E <
s L s £c
using prediction. we | | marget <8
In resolve (ME): B a__din — 53
Update GHR © IsBranch J 0
. 1:1
if branch Target i s
mispredicted. < = g
> — — oo
a Update GHR Using
Is a S Predicted Outcome
Mispredicted s : —
\franCh T \ 5 7:0 Global History
— \ T we L PHT
I%_‘—’ > a d _
/4 Update With Real Outcome 2-bit
| B h we counter
N s'a Branc a din
Global history A 7:0
Predicted that had been Post-resolve
Outcome used for prediction. 2-b counter.
YResolved <
Outcome T Outcome (1=T, 0=N) & =
33
1:1 2 Pre-resolve 2-b counter 2’, %
Target § N
Predictor Update P
PC (resolve) s}
Hardware (resolve) 2w
Shown in Green Is Branch (1, branch; 0, anything else.) %g
Pre-Resolve Global History g: ®

10

Problem 4: (10 pts) The diagram below is for a 4 MiB set-associative cache with a line size of 32 B. The
character size is the usual 8 bits. Other information about the cache can be deduced using hints in the
diagram. Helpful facts: 4 MiB = 222 B, 32 = 2°.

(a) Answer the following, formule are fine as long as they consist of grade-time constants.

MFHI in the blanks in the diagram.

o
CPU °
Data In

o
Addr
-0 e

[o]
o

Tag Tag
Addr Addr
: Data Data | 129
175 Out Out
Valid
Data Data
Addr Addr
Data Data
17:3 Out 17:3 Out

MComplete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Tag Index Offset

Address: ’ | ‘
39 18 17 5 4 32 0

MAssociativity:
The | associativity is 16 | The associativity is determined based on the given cache capacity, 222 bytes, and the eapacity of an

individual data store, 218 byT,QS. Since the cache Q&P&Q\W is the sum of the data store sizes, the ASSOQMU\/\W must be 3%
222-18 = 16,

MMemory Needed to Implement E{Indicate Unit!!:
It's the cache capacity, 4 MiB plus 16 x 2875 (40 — 18 + 1) b = 4 MiB + 3014656 b.

MShOVV the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

Tag Index Ofiset

Address: ’ |
39 22 21 5 4 3 2 0

11

The problem on this page is not based on the cache from Part a. The code in the problem belows run on a
cache with a line size of 64 B (which is 26 B). The code fragment starts with the cache empty; consider only
accesses to the array.

(b) Find the hit ratio executing the code below.
int sum = 0;
int *a = 0x2000000; // sizeof (int) == 4
int ILIMIT = 1 << 11; // = 21

for (int i=0; i<ILIMIT; i++) sum += al[i]1;

MWha‘c is the hit ratio running the code above? Show formula and briefly justify.

The line size of 26 = 64 bytes is given. The size of an array element, which is of type int, is 4 = 22 B, and so there are
26/22 = 2672 = 24 = 16 clements per line. The first access, at i=0, Will Miss bUt bring in a line with 24 elements, and so the
next 24 — 1 = 15 accesses will be to data on the line, hits. The access at =16 Will miss and the process Will repeat. Therefore

; i 15

12

Problem 5: (25 pts) Answer each question below.

(a) Appearing below are simple C routines and corresponding MIPS assembler code. C variable names match
the MIPS registers to which they were assigned. Register v0 is used for the return value. The first C routine,
procl, operates on 32-bit signed integers. Further below are two similar C routines, proc2 and proc3, each
followed by the MIPS routine written for procl—which is wrong because the MIPS routine is only correct
for procl. Rewrite those MIPS routines for proc2 and proc3. Note that int16_t is a signed 16-bit integer
and uint8_t is an unsigned 8-bit integer.

int32_t proc1(int32_t *a0, int al) { return aO[al] + aO[al+1]; }
Code below is correct for procl.

s11 $t0, $at, 2

add $tO, $t0, $a0

1w $vO, 0($t0)

1w $t1, 4(3$t0)

jr $ra

add $v0, $vO, $t1

MModify MIPS code for proc2. Pay attention to Efsize and Msign. MEliminate any unneeded

instructions.

int16_t proc2(int16_t *a0, int al) { return aO[al]l + aO[al+1]; }

Modify MIPS code to be correct for proc2.
sl1l $tO, $ai, 2

add $t0, $t0, $a0

1w $vO, 0($t0)

1w $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

SOLUTION
s11l $to, $al, 1 # Element size is 16 bits which is 2 chars, so mult by 2.
add $t0, $t0, $a0

1h $v0, 0($t0) # Because element is two bytes change lw to lh ..
1h $t1, 2($t0) # .. and change offset to 2.
jr $ra

add $vo0, $vO0, $t1

13

MModify MIPS code for proc2. Pay attention to Qfsize and Msign. MEliminate any unneeded

instructions.

uint8_t proc3(uint8_t *al0, int al) { return aO[al]l + aOlal+1]; }
Modify MIPS code to be correct for proc3.

sll $to, $ai, 2

add $t0, $t0, $a0

1w $vO, 0($t0)

1w $t1, 4($t0)

jr $ra

add $vo, $vO0, $t1

SOLUTION

Element size is 8 bits, or one byte.

add $t0, $ai, $a0 # No need to scale al (mult by elt size) before adding it to aO.
lbu $v0, 0($t0) # Element size is one byte and unsigned ..

lbu $t1, 1($t0) # .. so load using lbu and use offset of 1.

jr $ra

add $vo0, $vo0, $t1

14

(b) The statement below is based on a lack of understanding of how compilers work. Explain the misunder-
standing and otherwise correct the statement.

It takes a great deal of effort to write a correct and effective compiler optimizer. Therefore optimizers
are written for popular high-level languages such as C++11 but not for less popular languages such
as COBOL.

MThe misunderstanding about compilers is:

... that optimization is performed on high-level code. In fact, optimization is mostly performed on an intermediate represen-

tation which typically is the same for all high-level languages the compiler can handle. So effort on optimizing the intermediate
representation would benefit all those high-level languages.

1T i3 the compiler front end that translates high-level languages into the intermediate representation.

MHOW does that change the conclusion about which languages get better optimization?

The conelusion should be that improvements to & compiler's optimizer benett all high-level languages that the compiler supports.

(¢) Chip A has five 4-way superscalar cores. Chip B has 20 scalar cores. The cores are similar to our pipelined
MIPS implementations. All cores use a 1 GHz clock.

MCompu‘ce the peak execution rate in units of instructions per second of MChip A and MChip B.

Each chip can execute 20 instruetions per eyele or 20 x 10? insn/s.

E{Why would Chip A run faster on simple code, such as the routines used in the homework assignments?

It's reasonable 1o assume that “simple” code is single-threaded (not parallelized) and so it Will run on only one core. A Chip A core
axecutes at up to 4IPC, ideally four times faster than a Chip B core which runs at just 1 IPC. Though in typical circumstances
Chip A won't be 4 times Taster, it will still be better than Chip B for single-thread coda.

MWhich chip might be less expensive? Explain.

Chip B. The number of ALU bypass paths (multiplexor inputs) for a w-way, five-stage implementation might be 4w2. The total
number of bypass paths for Chip Ais 5 x 4 x 4% = 320 and the total number for Chip B is 20 x 4 x 1% = 80, which is a lot less.
What would you rather do, find the money to buy Chip A or paralielize your code 8o that it can run faster on Chip B? Of course,
the answer depends on the situation.

15

(d) Answer the following questions about ISAs.

Mlmplementations of VLIW ISAs are supposed to be less costly and have higher performance than super-
scalar implementations of conventional ISAs. Is Intel Itanium a good example of that? Explain

No. Intel loaded ftanium with costly features, such as a large number of registers with rotating windows (TOT use in software p‘\pgnmng),

50 there was no apparent cost benent. The performance was not spectacular efther, some blamed contemporary compilers for not
being able to properly exploit those costly features.

@What important concept came out of the development IBM System /3607
That of an “Instruction Set Architecture (\SA)” (spok@n using mr—quot@s) which would deseribe what the hardware would do, but

not how it would do it. The ISA was intended for '\mp\temenm'\ons ACeross a p\”OdUQ'L line (\O\N- 10 mgh-%d) and for '\mp\o.menm'\ons
in the future, me&pS a8 \Oﬂg as 15 years.

They also made use of computers 1o prepare documentation. \l‘m tempted to Use My air quotes again Tor the phrase “word processing”
DUt 1'm not sure it originated with the 360 project, and if 1 start 100king into it now who knows when 1'd get back 10 real \NOYK.X

MVAX is a good example of which ISA type?

CISC.

MTrue or false: TA-32 (a.k.a. x86) was widely adopted because of its elegant design? Explain.

False! Tne original 1SA was not designed for a long life. It had many compromise Tatures such as requiring a pair of registers to
specify a 32-bit memory address.

16

(e) The SPECcpu benchmarks can be run at two tuning levels, base and peak. Base scores are useful to
those running software developed using typical practices.

MWhat kind of computer buyers should use peak scores?

Buyers who intend to develop or buy code highly tuned Tor the machine it will run on. Sueh buyers don't mind spending 10ts of money
or effort 1o achieve 5% higher performance than those other guys get using standard development practices.

MHOW do the SPEC rules for preparing base and peak runs differ?

The base rules dictate that all benchmarks using the same language shall use the same optimization flags. This might reflect the
practice of an experienced programmer having a good set of flags (and for Most, that would be -O3) that would be used from project
10 project. The peak rules allow each benchmark to use different optimization flags. That might reflect the practice of a programmer
obsessively tweaking flags to get the best performance. (Most programmers in that situation should 100k to their own code frst to
find opportunities for improving performance.)

17

