
Name Formatted For 2-Sided Printing

Computer Architecture

LSU EE 4720

Final Examination

1 May 2019, 12:30–14:30 CDT

Alias

Problem 1 (22 pts)

Problem 2 (22 pts)

Problem 3 (21 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: (22 pts) Notice that the execution of the code fragment below suffers two stalls when executing
on our 2-way superscalar MIPS implementation. The add stalls due to a dependence with or and the sw

stalls due to a dependence with add. The MIPS implementation has three unconnected logic blocks that
may be useful. Each must be connected to the opcode and func of the instruction in the appropriate slot.
The output of the =or is 1 if the instruction is an or. The output of uses rs is 1 if the instruction uses

the rs register as a source, likewise for uses rt .

Cycle 0 1 2 3 4 5 6 7 8

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

sw r3, 4(r6) IF -> ID ----> EX ME WB

addi r6, r6, 8 IF -> ID ----> EX ME WB

(a) In the execution below the sw no longer stalls for r3. Add a bypass path that can be used by sw to get
the r3 value in the execution below but not for other cases.

Add bypass path for r3 so sw executes as shown. Label the path “Part a”, and do not add unneeded
bypass paths.

Cycle 0 1 2 3 4 5 6 7 8

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

sw r3, 4(r6) IF -> ID EX ME WB

addi r6, r6, 8 IF -> ID EX ME WB

(b) The add stalls due to the dependence with or carried by r1. Add control logic that detects such a
dependence and connect it to the Stall ID OR gate at the lower right. The output of the logic should be 1

for any true dependence between two instructions in a group.

Provide a stall signal when there is a dependence between the two instructions in ID.

(c) Notice that because the second operand is r0, the or just copies the value in r2 to r1. Therefore the
add could have used r2 instead of r1 and avoided the stall. Design hardware to perform such substitutions.
The hardware, including control logic, should detect when an or is used as a copy (as above) and if so avoid
the stall and deliver the correct source operand to the slot-1 instruction.

Cycle 0 1 2 3 4 5

or r1, r2, r0 IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

sw r3, 4(r6) IF ID EX ME WB

addi r6, r6, 8 IF ID EX ME WB

Detect the substitution opportunity and suppress the Stall ID signal (from the previous part).

Make sure the slot-1 instruction uses the correct value and that both instructions execute correctly.

Of course, pay attention to cost. Nothing added for this problem should touch 32 bits.

(d) The following is a bonus question that did not appear on the original exam. Bonus for whom you ask?
Definitely a bonus for those who took the class in the Spring 2019 semester and took a look at the posted

2

exam. Those (you) will have an opportunity to make connections between concepts learned in the class and
that will provide a deeper understanding and longer retention. Yes, the substitution hardware eliminates
a stall. Suppose that r2 had to be copied into r1. Provide an argument that substitution hardware is
a waste of resources, illustrate with an example. Provide another argument—also with an example—that
substitution hardware eliminates a stall that cannot be eliminated in another way. Whether substitution
is a good idea will depend on whether the example illustrating its utility is representative of realistically
compiled actual code.

Argument against substitution hardware. Code example.

Argument for substitution hardware. Code example.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md

dst
0

Dest. reg

Addr rsv
0

rtv
0

Addr

Data

Data

+
15:0

31:2

alu
0

rtv

Addr rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

alu
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Immed

Addr

D In

Mem

Port

addr

D
Out

25:21

20:16

25:21

20:16

15:0

15:0

=or

uses rs

uses rt
Stall ID

slot 0

slot 1

s
lo

t
0

s
lo

t
1

s
lo

t
0

s
lo

t
1

3

Problem 2: (22 pts) Appearing below is our MIPS FP pipeline with the comparison units added.

(a) Show the execution of the following fragment on this hardware.

Show execution up to second fetch of lwc1. Pay attention to dependencies, including the FP condition.

Cycle: 0

LOOP:

lwc1 f1, 0(r1)

add.s f2, f1, f2

add.s f4, f1, f3

c.lt.s f2, f6

bc1t LOOP # Taken

addi r1, r1, 8

swc1 f2, 4(r1)

and r1, r1, r9

(b) Notice that there are two circled letters (in blue) in the lower part of the diagram. For each letter provide
a code fragment that causes the labeled wire to go to logic 1.

Code fragment that makes A logic 1.

Show its execution and indicate cycle at which A is 1.

Code fragment that makes B logic 1.

Show its execution and indicate cycle at which B is 1.

4

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

weuses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode
dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

FCC

we

D In

DOut

To branch
control

logic. C1 C2

FP branch

FP compare

cmp

c
m

p

c
m

p

A

B

5

Problem 3: (21 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on two systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor and one system has a local
predictor with an 8-outcome local history.

Branch B1 has a repeating pattern, two repetitions are shown. Branch B2 repeatedly and randomly emits
three sequences, a, b, and c. Sequence a is NT, sequence b is NNNTT (five outcomes), and sequence c is
NNNN NTTT (eight outcomes). After finishing one sequence, a new one is started. Sequence a is chosen with
probability .4, sequence b with probability .5, and c with probability .1.

Here are some examples of B2 outcomes, with spaces placed between the sequences for clarity. Example 1:
NT NNNTT NT NNNNNTTT (that’s a, b, a, c). Example 2: NNNNNTTT NT NT NNNTT NNNTT (that’s c, a, a, b, b).

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T N N N N T T T N N N N T T

B2: (a, p=.4): NT (b, p=.5): NNNT T (c, p=.1): NNNN NTTT

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the local predictor on branch B1?

What is the accuracy of the local predictor on branch B2?

What is the accuracy of the bimodal predictor on branch B2?

6

(b) Appearing below is a diagram of our global predictor. Notice that the GHR is not updated until the
branch resolves. Modify the predictor so that the GHR is updated when the branch is being predicted (in
IF) using the predicted outcome. When the branch resolves check whether the prediction was correct, and
if not (if it was mispredicted) write the correct history into the GHR.

The following is interesting background material omitted from the original exam. The importance of updating
the GHR using the predicted outcome increases with the number of post-branch instructions that are in the
pipeline at the time a branch resolves. Consider our five-stage pipeline with branches resolving in ME. In
that case there are just three post-branch instructions. For an 8-way superscalar pipeline there would be
3 × 8 = 24 instructions. One or more of those 24 instructions could itself be a branch. In the unmodified
design below those branches would have been predicted with a GHR that lacked the outcome of the resolving
branch and those that followed. The problem is much greater in dynamically scheduled systems where over
100 instructions can be in flight. For that reason global-like predictors in dynamically scheduled systems use
designs like the one requested for this problem.

Add hardware to detect whether the resolving branch has been mispredicted.

During prediction write GHR based on prediction, during resolve apply corrected GHR if branch
mispredicted.

PC

2-bit

counter

1:1

Target

Post-resolve

2-b counter.

2

Target

+1

-1

Outcome (1=T, 0=N)

Pre-resolve 2-b counter

IF ID

T
ra

v
e
ls

 w
it

h
 i
n
s
tr

u
c
ti

o
n
,

u
s
e
d
 w

h
e
re

 b
ra

n
c
h

 r
e
s
o
lv

e
d
.

F
ro

m
 M

E
 (o

r s
ta

g
e

w
h
e
re

 b
ra

n
c
h
 re

s
o
lv

e
d
).

BHT

a d

a d in

PC

15:2

15:2

we

PC (resolve)

Target

Is Branch (1, branch; 0, anything else.)

P
C

 (
re

s
o
lv

e
)

Is Branch

Is Branch

P
re

d
ic

to
r

U
p
d
a
te

 H
a
rd

w
a
re

(r
e
s
o
lv

e
)

S
h

o
w

n
 i
n
 G

re
e
n

P
re

d
ic

to
r

P
re

d
ic

ti
o
n
 H

a
rd

w
a
re

S
h
o
w

n
 i
n

 B
la

c
k

P
re

d
ic

te
d

D
ir

e
c
ti

o
n

(N
 o

r
T
)

P
re

d
ic

te
d

T
a
rg

e
t

P
re

d
ic

te
d

Is
 B

ra
n

c
h

PHT

a d

a d in
we

Updated
global
history

Global history

that had been

used for prediction.

6:0

7:0

lsb

msb

Pre-Resolve Global History

7:0

G
H

R

we

Global History7:0

7

Problem 4: (10 pts) The diagram below is for a 4MiB set-associative cache with a line size of 32B. The
character size is the usual 8 bits. Other information about the cache can be deduced using hints in the
diagram. Helpful facts: 4MiB = 222 B, 32 = 25.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

CPU

Addr

Data In

logic

hit

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

8B

39:18

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Associativity:

Memory Needed to Implement Indicate Unit!!:

Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

Address:

8

The problem on this page is not based on the cache from Part a. The code in the problem belows run on a
cache with a line size of 64B (which is 26 B). The code fragment starts with the cache empty; consider only
accesses to the array.

(b) Find the hit ratio executing the code below.

int sum = 0;

int *a = 0x2000000; // sizeof(int) == 4

int ILIMIT = 1 << 11; // = 211

for (int i=0; i<ILIMIT; i++) sum += a[i];

What is the hit ratio running the code above? Show formula and briefly justify.

9

Problem 5: (25 pts) Answer each question below.

(a) Appearing below are simple C routines and corresponding MIPS assembler code. C variable names match
the MIPS registers to which they were assigned. Register v0 is used for the return value. The first C routine,
proc1, operates on 32-bit signed integers. Further below are two similar C routines, proc2 and proc3, each
followed by the MIPS routine written for proc1—which is wrong because the MIPS routine is only correct
for proc1. Rewrite those MIPS routines for proc2 and proc3. Note that int16_t is a signed 16-bit integer
and uint8_t is an unsigned 8-bit integer.

int32_t proc1(int32_t *a0, int a1) { return a0[a1] + a0[a1+1]; }

Code below is correct for proc1.

sll $t0, $a1, 2

add $t0, $t0, $a0

lw $v0, 0($t0)

lw $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

Modify MIPS code for proc2. Pay attention to size and sign. Eliminate any unneeded
instructions.

int16_t proc2(int16_t *a0, int a1) { return a0[a1] + a0[a1+1]; }

Modify MIPS code to be correct for proc2.

sll $t0, $a1, 2

add $t0, $t0, $a0

lw $v0, 0($t0)

lw $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

Modify MIPS code for proc2. Pay attention to size and sign. Eliminate any unneeded
instructions.

uint8_t proc3(uint8_t *a0, int a1) { return a0[a1] + a0[a1+1]; }

Modify MIPS code to be correct for proc3.

sll $t0, $a1, 2

add $t0, $t0, $a0

lw $v0, 0($t0)

lw $t1, 4($t0)

jr $ra

add $v0, $v0, $t1

10

(b) The statement below is based on a lack of understanding of how compilers work. Explain the misunder-
standing and otherwise correct the statement.

It takes a great deal of effort to write a correct and effective compiler optimizer. Therefore optimizers
are written for popular high-level languages such as C++11 but not for less popular languages such
as COBOL.

The misunderstanding about compilers is:

How does that change the conclusion about which languages get better optimization?

(c) Chip A has five 4-way superscalar cores. Chip B has 20 scalar cores. The cores are similar to our pipelined
MIPS implementations. All cores use a 1GHz clock.

Compute the peak execution rate in units of instructions per second of Chip A and Chip B.

Why would Chip A run faster on simple code, such as the routines used in the homework assignments?

Which chip might be less expensive? Explain.

11

(d) Answer the following questions about ISAs.

Implementations of VLIW ISAs are supposed to be less costly and have higher performance than super-
scalar implementations of conventional ISAs. Is Intel Itanium a good example of that? Explain

What important concept came out of the development IBM System/360?

VAX is a good example of which ISA type?

True or false: IA-32 (a.k.a. x86) was widely adopted because of its elegant design? Explain.

12

(e) The SPECcpu benchmarks can be run at two tuning levels, base and peak. Base scores are useful to
those running software developed using typical practices.

What kind of computer buyers should use peak scores?

How do the SPEC rules for preparing base and peak runs differ?

13

