
LSU EE 4720 Homework 5 Solution Due: XX11 13 April 2018

This assignment consists of questions on the ARM A64 (AAarch64) ISA. (Not to be confused
with ARM A32, which might be called classic ARM. Older information sources that refer to ARM
are probably referring to A32, which is not relevant to this assignment.)

A description of the ARM ISA is linked to the course references page, at
http://www.ece.lsu.edu/ee4720/reference.html. Feel free to seek out introductory material
as a suppliment.

ARM A64 was used in EE 4720 Spring 2017 Homework 4 and Spring 2017 Midterm Exam
Problems 2 and 3. It may be useful to see those assignments for code samples, but the questions
themselves are different.

Appearing on the next page is a simple C routine, lookup, that returns a constant from a list.
The routine appears to have been written with the expectation that its call argument, i, would be
either 0, 1, or 2. Following the C code is ARM A64 code for lookup as compiled by gcc version 8.

Use the course reference materials and external sources to understand the ARM code below.
The course references page has a link to the ARM ISA manual which should be sufficient to answer
questions in this assignment. Feel free to seek out introductory material on ARM A64 (AArch64)
assembly language, but after doing so use the ARM Architecture Reference Manual to answer
questions in this assignment.

Full-length versions of the code on the next page, along with other code examples can be found
at http://www.ece.lsu.edu/ee4720/2018/hw05.c.html and
http://www.ece.lsu.edu/ee4720/2018/hw05-arm.s.html. These include the pi program and a
simple copy program that was a part of the decompress program used in Homeworks 1, 2, and 3.

Code on next page, problems on following pages.

1

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/reference.html
http://www.ece.lsu.edu/ee4720/2018/hw05.c.html
http://www.ece.lsu.edu/ee4720/2018/hw05-arm.s.html

int lookup(int i)

{

int c[] = { 0x12345678, 0x1234, 0x1234000 };

return c[i];

}

@ ARM A64 Assembly Code. C code appears in comments.

lookup:

@@ R e g i s t e r U s a g e

@

@ CALL VALUE

@ w0: The value of i (from the C routine above).

@

@ RETURN VALUE

@ w0: The value of c[i].

@

@ Note: The size of int here is 4 bytes.

@ const int c[] = { 0x12345678, 0x1234, 0x1234000 };

adrp x1, .LC1

mov w2, 0x4000

ldr d0, [x1, #:lo12:.LC1]

movk w2, 0x123, lsl 16

str w2, [sp, 8]

str d0, [sp]

@ return c[i];

ldr w0, [sp, w0, sxtw 2]

ret

. s e t i o n

.rodata.cst8,"aM",@progbits,8

.LC1:

.word 0x12345678

.word 0x1234

Problems start on next page.

2

Problem 1: The ARM code above uses three kinds of register names, those starting with d, w,
and x.

(a) Explain the difference between each.

The d registers are registers in the SIMD & floating-point register file. The w and x are in the general-purpose
register file. The GPR file contains 32 64-bit registers, r0 to r31. In assembly language x0 to x30 refer to the entire
64 bits of r0 to r30, while w0 to w30 refer to the lower 32-bits of r0 to r30. In assembly language w31 and x31 refer
to the constant zero and SP refers to register r31. The SIMD & FP register file contains 32 128-bit registers, v0 to
v31. In assembly language d0 to d31 refer to the low 64 bits. See section B1.2.1 of the ARM V8 Architecture Reference
Manual (2017).

(b) MIPS has general-purpose registers and four sets of co-processor registers. Indicate the name
of the register set for each of the three types of ARM registers above. Hint: two are part of the
same set.

See answer above.

Problem 2: The movmoves constant 0x4000 into register w2. Actually, mov is a pseudo instruction.

(a) What are pseudo instructions called in ARM?

They are called aliases.

(b) What is the real instruction that the assembler will use in this particular case?

The real instruction is movz with the shift amount set to zero.

(c) Show the encoding for this use of mov. Be sure to show how w2 and 0x4000 fit into the fields.

Solution appears below. The sf field is set to 0 because we are using a w register, which is 32 bits. The opcode fields
are set based on the description in the architecture manual. The hw field is set to zero to indicate that the immediate is
not shifted. The imm16 is the value appearing in the assembly code and Rd is the register number.

movz:

sf

0

31

opc

102

30 29

opc2

1001012

28 23

hw

0

22 21

imm16

400016

20 5

Rd

2

4 0

Problem 3: MIPS-I does not have an instruction like adrp.

(a) Describe what the adrp instruction does in general.

The adrp instruction writes its destination register with (PC & bitwise not 0xfff) + (imm << 12

), where PC & bitwise not 0xfff is the address of the adrp instruction with the 12 least-significant bits set to
zero. See the next part for an example.

(b) Explain what it is doing in the code above. (It might be easier to look at the documentation
for adr first.)

It is setting register x1 to the address .LC1 & bitwise not 0xfff (address .LC1 with the 12 least-significant
bits set to zero). Instruction ldr d0, [x1, #:l012:.LC1] computes its address by adding the least significant
bits of .LC1, which is the same as .LC1 & 0xfff, to x1, the result of which is .LC1. The immediate value in the
adrp instruction was set to (.LC1 >> 12) - (PC >> 12).

The alert student may wonder why the compiler didn’t choose an instruction that would set x1 to exactly .LC1,
such as adr. It’s hard to know for sure, but one possible reason was so the same register, x1 could be used as a base for
accesses to multiple addresses, say .LC1, .LC2, etc., all of which had the same values for bits 63 to 12.

(c) Show MIPS code that writes the same value to its destination as adrp. Do not use MIPS pseudo
instructions other than la. Assume that MIPS integer registers are 64 bits.

3

subi r3, r0, 0x1000 # Write r3 with 0xfffff000

la r2, .LC1

and r1, r2, r3 # Write r1 with low 12 bits set to zero.

Problem 4: The movk instruction is sort of an improved version of lui.

(a) Describe what the movk instruction does in general.

It moves a 16-bit immediate into a 16-bit section of its destination register, leaving the other 16 or 48 bits unchanged.

(b) Explain why a single MIPS lui instruction could not do what the movk is doing in the code
above.

Because the lui always zeros the low 16 bits.

4

Problem 5: Add comments to the ARM code above that explain what the code is doing, rather
than what the individual instructions do.

// SOLUTION

int lookup(int i) { int c[] = { 0x12345678, 0x1234, 0x1234000 }; return c[i]; }

@ ARM A64 Assembly Code. C code appears in comments.

lookup:

@@ R e g i s t e r U s a g e

@

@ CALL VALUE

@ w0: The value of i (from the C routine above).

@

@ RETURN VALUE

@ w0: The value of c[i].

@

@ Note: The size of int here is 4 bytes.

@ const int c[] = { 0x12345678, 0x1234, 0x1234000 };

@

@ Read the first two elements of the c array from memory at

@ address .LC1, and compute the third element using immediates.

@

adrp x1, .LC1 @ Load x1 with base of c original array.

mov w2, 0x4000 @ Compute lower 16-bits of 3rd c array elt.

ldr d0, [x1, #:lo12:.LC1] @ Load 1st and 2nd elts of c array.

movk w2, 0x123, lsl 16 @ Compute 3rd elt, 0x1234000

@

@ Write a copy of the c array to memory ...

@ ... starting at the address in register sp.

@

str w2, [sp, 8] @ Write 3rd elt to a c array copy.

str d0, [sp] @ Write 1st and 2nd elts to c array copy.

@ return c[i];

ldr w0, [sp, w0, sxtw 2] @ Load the i’th (w0’th) element.

ret

. s e t i o n

.rodata.cst8,"aM",@progbits,8

.LC1:

.word 0x12345678 @ First element of c array

.word 0x1234 @ Second element of c array.

@ This element intentionally left blank.

5

Problem 6: The lookup routine was compiled using gcc at optimization level 3, the highest.
Nevertheless, the code appears more complicated than it need to be. Explain what about the code
is excessively complicated and how it could be simplified.

Because the compiler, for whatever reason, decided to construct the c array using the first two elements stored at
.LC1 and an instruction that wrote the third array element.

Most humans would simply put the entire c array at .LC1 so that the routine would consist of just two instructions,
an adr instruction and an ldr instruction.

6

