
LSU EE 4720 Homework 3 Solution Due: 5 March 2018

Problem 1: Appearing below are two MIPS implementations, The First Implementation is taken
from Homework 2 Problem 4. Branches suffer a two-cycle penalty on this implementation since
they resolve in ME. On the The Second Implementation branches resolve in EX reducing the penalty
to one cycle. For convenience for those using 2-sided printers the same implementations are shown
again on the next page.

The First (HW2 P4) Implementation

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

E

2'b0 format
immed =

The Second Implementation

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

2'b0 format
immed =

1

http://www.ece.lsu.edu/ee4720/


The First (HW2 P4) Implementation The Second Implementation

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

E

2'b0 format
immed =

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D
 

dstdst

2'b0 format
immed =

The code fragment below and its execution on The First Implementation is taken from the
solution to Homework 2 Problem 4. Notice that the branch suffers a two-cycle branch penalty.

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 The 1st Implementation

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 The 2nd Implementation

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IFx

X2

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IFx

X2

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME

2



(a) On The Second Implementation the branch penalty would only be one cycle. But, as we
discussed in class, moving branch resolution from ME to EX might impact the critical path. Let φ1 =
1GHz denote the clock frequency on The First Implementation and call the clock frequency on The
Second Implementation φ2. For what value of φ2 would the performance of the two implementations
be the same when executing the code above for a large number of iterations?

Show your work.

Short answer: φ2 = φ1
10

11
= 909.09MHz.

Explanation: One loop iteration on The First Implementation takes 11 clock cycles. (The duration of loop iteration
x can be found by subtracting the fetch time of the first instruction of iteration x from the fetch time of the first instruction
of iteration x + 1. In the loop above iteration 0 takes 11 − 0 = 11 cyc and iteration 1 takes 22 − 11 = 11 cyc.
There’s no guarantee that iteration 0 and 1 will take the same amount of time. However we can expect iteration 2 to take
as much time as iteration 1 because the state of the pipeline is identical at cycles 11 and 22: lbu in IF, addi in ME,
and bne in WB.) By similar reasoning one loop iteration on The Second Implementation takes 10 cycles. Dividing cycles

by clock frequency gives time, so 11 cycles on The First Implementation takes 11

φ1

= 11ns. To find the clock frequency

for The Second Implementation at which the two perform equally solve 11

φ1

= 10

φ2

for φ2, φ2 = φ1
10

11
= 909.09MHz.

Grading Note: A common mistake was to assume that in The Second Implementation the sb and bne suffer
only 1-cycle stalls rather than the 2-cycles that they suffer in The First Implementation. That’s not a good mistake to
make because the only change between the two implementations is where the branch resolves. The two-cycle stall starting
in cycle 3 is due to the sb waiting for the value produced by the lbu, the stall starting in cycle 7 is due to the bne
waiting for the value of t4 written by addi. The change does not effect either stall.

3



Problem 2: The code below is taken from the solution to Homework 2 Problem 1. Sharp students
might remember that the loop can be entered at four places: the COPY_LOOPd4 label (which is the
normal way to enter such a loop), the second lb, the third lb, or the fourth lb. For this problem
assume that the loop can only be entered at the COPY_LOOPd4 label.

COPY_LOOPd4:

lb $t0, 0($t4) # First lb

sb $t0, 0($a1)

lb $t0, 1($t4) # Second lb

sb $t0, 1($a1)

lb $t0, 2($t4) # Third lb

sb $t0, 2($a1)

lb $t0, 3($t4) # Fourth lb

sb $t0, 3($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOPd4

addi $a1, $a1, 4

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

(a) Schedule the code (rearrange the instructions) so that it executes without a stall on the imple-
mentation shown above.

The solution appears below. The sb instructions have been moved away from the lb instructions, avoiding lb/sb
stalls. The increment of t4 has been moved up, avoiding the need for the branch to stall. Note that the destination
register of all but the first lb and the source of all but the first sb had to be changed to avoid the second lb clobbering
the value loaded by the first lb, etc.

Grading Note: One common mistake was to leave the lb and sb registers unchanged.

COPY_LOOPd4: SOLUTION

lb $t0, 0($t4) IF ID EX ME WB

lb $t1, 1($t4) IF ID EX ME WB

lb $t2, 2($t4) IF ID EX ME WB

lb $t9, 3($t4)

addi $t4, $t4, 4

sb $t0, 0($a1)

sb $t1, 1($a1)

sb $t2, 2($a1)

sb $t9, 3($a1)

bne $t4, $t5, COPY_LOOPd4

addi $a1, $a1, 4

4



Problem 3: Perhaps some students have already wondered why, if the goal were to reduce dy-
namic instruction count, the previous occurrence loop (the subject of the first two problems and
of Homework 2) wasn’t written using lw and sw instructions since they handle four times as much
data. Such a loop appears below. Alas, the loop won’t work for every situation, for one reason due
to MIPS’ alignment restrictions.

Let ap denote the address of the previous text occurrence (the value is in t4), let ao denote the
address of the next character to write into the output buffer (the value is in a1), and let L denote
the length of the previous occurrence to copy. (Register t5 is ap + L.)

COPY_LOOP44:

lw $t0, 0($t4)

sw $t0, 0($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOP44

addi $a1, $a1, 4

j LOOP

nop

(a) In terms of ap, ao, and L, specify the conditions under which the loop above will run correctly.
Also show that the loop would work for about only 1 out of 64 copies assuming that the values
of ap, ao, and L, are uniformly distributed over some large range. For this part don’t assume any
special code added before or after.

The loop will only run correctly if ap, ao, and L are all multiples of 4 and if L ≥ 4. That is ap mod 4 = 0,
ao mod 4 = 0, Lmod 4 = 0, and L ≥ 4.

Suppose that previous occurrence lengths are uniformly distributed over range [1, 4M ], for some integer M . Be-
cause they are uniformly distributed the probability of each value in the range is P (L = x) = 1

4M
for 1 ≤ x ≤ 4M .

Since Lmod 4 = 0 for M values in the range, those values occur 1

4
of the time. The same argument can be made for

the address of the previous occurrence and the current buffer location. If each is a multiple of four 1

4
of the time and

assuming their values are independent, all of them are multiples of four
(

1

4

)3
= 1

64
of the time.

(b) Suppose one added prologue code before the loop to copy the first few characters and epilogue

code after the loop to copy the last few characters, with the goal of being able to use the loop for
more than 1

64
th (or 100

64
%) of copies.

In terms of ap, ao, and L, specify the conditions under which the loop will run correctly and
show that the fraction of copies that the loop can handle is about 1

4
.

Also show the number of characters that should be copied by the prologue code and the number
of characters that should be copied by the epilogue code.

If the only requirement were that L be a multiple of 4, then prologue code could copy the first Lmod 4 characters
and the loop would handle the remaining L′ = L− Lmod 4 characters. But t4 and a1 must both also be a multiple
of 4 when the COPY LOOP44 loop is entered. Both!

Suppose (ap mod 4) = (ao mod 4) and let m = (ao mod 4) and b =

{

0, if m = 0;
4−m, otherwise.

. If the prologue

loop executes b iterations (and advances t4 and a1) then when the COPY LOOP44 is entered both t4 and a1 will be
multiples of 4. Execute L′ = ⌊(L − b)/4⌋ iterations in COPY LOOP44 and then execute L − 4L′ − b iterations in
the epilogue code.

If ap mod 4 6= ao mod 4 then COPY LOOP44 cannot work.
Suppose ap, a0, and L are uniformly distributed and independent, as considered in the second part. Then

ap mod 4 = ao mod 4 occurs 1

4
of the times because there are 4 possible values of ap mod 4 and 4 values for ao mod 4,

for a total of 16 pairs. Each pair is equally likely with probability 1

16
. For four of those pairs ap mod 4 = ao mod 4,

5



the probability of any of those favorable pairs occurring is 4 1

16
= 1

4
. The value of L does not matter so long as it is

L ≥ 10 since the epilogue will handle the last 1-3 characters.

6


