
LSU EE 4720 Homework 3 Due: 5 March 2018

Problem 1: Appearing below are two MIPS implementations, The First Implementation is taken
from Homework 2 Problem 4. Branches suffer a two-cycle penalty on this implementation since
they resolve in ME. On the The Second Implementation branches resolve in EX reducing the penalty
to one cycle. For convenience for those using 2-sided printers the same implementations are shown
again on the next page.

The First (HW2 P4) Implementation

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D

dstdst

E

2'b0 format
immed =

The Second Implementation

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D

dstdst

2'b0 format
immed =

1

http://www.ece.lsu.edu/ee4720/

The First (HW2 P4) Implementation The Second Implementation

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D

dstdst

E

2'b0 format
immed =

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2

PC

15:0

D

dstdst

2'b0 format
immed =

The code fragment below and its execution on The First Implementation is taken from the
solution to Homework 2 Problem 4. Notice that the branch suffers a two-cycle branch penalty.

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 The 1st Implementation

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID

(a) On The Second Implementation the branch penalty would only be one cycle. But, as we
discussed in class, moving branch resolution from ME to EX might impact the critical path. Let φ1 =
1GHz denote the clock frequency on The First Implementation and call the clock frequency on The
Second Implementation φ2. For what value of φ2 would the performance of the two implementations
be the same when executing the code above for a large number of iterations?

Show your work.

2

Problem 2: The code below is taken from the solution to Homework 2 Problem 1. Sharp students
might remember that the loop can be entered at four places: the COPY_LOOPd4 label (which is the
normal way to enter such a loop), the second lb, the third lb, or the fourth lb. For this problem
assume that the loop can only be entered at the COPY_LOOPd4 label.

COPY_LOOPd4:

lb $t0, 0($t4) # First lb

sb $t0, 0($a1)

lb $t0, 1($t4) # Second lb

sb $t0, 1($a1)

lb $t0, 2($t4) # Third lb

sb $t0, 2($a1)

lb $t0, 3($t4) # Fourth lb

sb $t0, 3($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOPd4

addi $a1, $a1, 4

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

15:0

D

dstdst

m�� l��

m��

l��

(a) Schedule the code (rearrange the instructions) so that it executes without a stall on the imple-
mentation shown above.

3

Problem 3: Perhaps some students have already wondered why, if the goal were to reduce dy-
namic instruction count, the previous occurrence loop (the subject of the first two problems and
of Homework 2) wasn’t written using lw and sw instructions since they handle four times as much
data. Such a loop appears below. Alas, the loop won’t work for every situation, for one reason due
to MIPS’ alignment restrictions.

Let ap denote the address of the previous text occurrence (the value is in t4), let ao denote the
address of the next character to write into the output buffer (the value is in a1), and let L denote
the length of the previous occurrence to copy. (Register t5 is ap + L.)

COPY_LOOP44:

lw $t0, 0($t4)

sw $t0, 0($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOP44

addi $a1, $a1, 4

j LOOP

nop

(a) In terms of ap, ao, and L, specify the conditions under which the loop above will run correctly.
Also show that the loop would work for about only 1 out of 64 copies assuming that the values
of ap, ao, and L, are uniformly distributed over some large range. For this part don’t assume any
special code added before or after.

(b) Suppose one added prologue code before the loop to copy the first few characters and epilogue

code after the loop to copy the last few characters, with the goal of being able to use the loop for
more than 1

64
th (or 100

64
%) of copies.

In terms of ap, ao, and L, specify the conditions under which the loop will run correctly and
show that the fraction of copies that the loop can handle is about 1

4
.

Also show the number of characters that should be copied by the prologue code and the number
of characters that should be copied by the epilogue code.

4

