
LSU EE 4720 Homework 2 Solution Due: 16 February 2018

The solution to several of the problems in this assignment requires material about to be covered in

class, in particular, stalling instructions to avoid hazards. For coverage of this material see slide set six,

http://www.ece.lsu.edu/ee4720/2018/lsli06.pdf. For a solved problem see 2014 Homework 1 Problem

3. Feel free to look through old homework and exams for other similar problems, but when doing so make

sure that the MIPS implementation matches the one in this problem: the muxen at the ALU inputs should

each have just 2 inputs.

Problem 1: Recall that in the unsqw program from Homework 1 there was a loop that had to copy the
prior occurrence of a piece of text to the output buffer. That loop from the solution appears below, and
again re-written to improve performance, at least that was the goal.

# Original Code --------------------------------------------------------------

# Copy the prior occurrence of text from some part of the

# output buffer to the end of the output buffer.

# At this point in code:

# Reference marker is in $t0.

# Length is in register $t3.

# Distance is in register $t4.

#

sub $t4, $a1, $t4 # Compute starting address of prior occurrence.

add $t5, $t4, $t3 # Compute ending address of prior occurrence.

addi $a0, $a0, 1

COPY_LOOP:

lb $t0, 0($t4) # Load character of prior occurrence ..

sb $t0, 0($a1) # .. and write it to the end of the output buffer.

addi $t4, $t4, 1

bne $t4, $t5, COPY_LOOP

addi $a1, $a1, 1

j LOOP

nop
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# Improved Code --------------------------------------------------------------

# Copy the prior occurrence of text to the end of the output buffer.

# At this point in code:

# Reference marker is in $t0.

# Length is in register $t3.

# Distance is in register $t4.

#

sub $t4, $a1, $t4 # Compute starting address of prior occurrence.

addi $a0, $a0, 1

# Round length (L) up to a multiple of 4.

#

addi $t7, $t3, 3

andi $t8, $t7, 0xfffc # Note: this only works if L < 65536

sub $t6, $t8, $t3

#

# At this point:

# $t8: L’, rounded-up length.

# $t6: Amount added to L to round it up. That is, L’ - L

# t6 can be 0, 1, 2, or 3.

# If t6 is 0, then L’ = L;

# if t6 is 1, then L’ = L + 1; etc.

# Decrement prior-occurrence and output-buffer pointers.

#

sub $t4, $t4, $t6

sub $a1, $a1, $t6

# Jump to one of the four lb instructions in the copy loop.

#

la $t7, COPY_LOOPd4 # Get address of first lb instruction.

sll $t6, $t6, 3 # Compute offset to lb that we want to start at.

add $t7, $t7, $t6 # Compute address of starting lb ..

jr $t7 # .. and jump to it.

add $t5, $t4, $t8 # Don’t forget to compute stop address.

COPY_LOOPd4:

lb $t0, 0($t4)

sb $t0, 0($a1)

lb $t0, 1($t4)

sb $t0, 1($a1)

lb $t0, 2($t4)

sb $t0, 2($a1)

lb $t0, 3($t4)

sb $t0, 3($a1)

addi $t4, $t4, 4

bne $t4, $t5, COPY_LOOPd4

addi $a1, $a1, 4

j LOOP

nop

Let L denote the length of the prior occurrence of text to copy.

(a) Determine the number of instructions executed by the original code in terms of L. Include the copy loop
and the instructions before it shown above. State any assumptions.

The number of instructions executed is: 3+5L+2 = 5+5L. This includes the nop since the time to execute the program
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includes the time to handle nops.

(b) Determine the number of instructions executed by the improved code in terms of L. Include the copy
loop and the instructions before it shown above. State any assumptions.

Short Answer: The number of instructions executed is: 13 + 2L+ 3⌈L/4⌉+ 2 = 15 + 2L+ 3⌈L/4⌉ ≈ 15 + 2.75L.
Explanation: The 15 term covers instructions outside of the loop. Each full iteration of the loop executes four lb/sb instruction

pairs however the loop can be entered at any one of the four lb instructions, with the entry point chosen so that exactly L characters
are copied. The 2L term covers the lb/sb pairs. The loop also includes two addi instructions and a branch. These are executed
once per iteration and there are ⌈L/4⌉ iterations. These three instructions are covered by the 3⌈L/4⌉ term.

(c) What is the minimum value of L for the improved method to actually be faster?

An approximate solution can be found by solving 5 + 5L = 15 + 2.75L for L, yielding L = 40

9
≈ 4.44. Because L must

be an integer and because we ignored the ceiling function we need to investigate values of L around 4. For L = 6 the improved

method is 2 instructions faster, for all 0 < L < 6 the original method takes fewer cycles. So the minimum value is L = 6 .

(d) What is it about the improved code that helps performance?

Short Answer: The two addis and the bne are executed just once for each four characters copied.
Long Answer: In both the original and improved code one lb and one sb are executed for each character copied. That is

captured in the 2L term in the expression for the improved code and part of the 5L term in the expression for the original code.
So for these the two codes are comparable. But in the improved code the two addi instructions and the bne are executed once for
every four characters copied while in the original code they are executed four times as often: one for each character copied. That is
what is responsible for the improved performance.
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Problem 2: Note: The following problem is identical to 2016 Homework 1 Problem 1. Try to solve it

without looking at the solution. Answer each MIPS code question below. Try to answer these by hand
(without running code).

(a) Show the values assigned to registers t1 through t8 (the lines with the tail comment Val:) in the code
below. Refer to the MIPS review notes and MIPS documentation for details.

Solution appears below (to the right of SOLUTION, of course).

.data

myarray:

.byte 0x10, 0x11, 0x12, 0x13

.byte 0x14, 0x15, 0x16, 0x17

.byte 0x18, 0x19, 0x1a, 0x1b

.byte 0x1c, 0x1d, 0x1e, 0x1f

.text

la $s0, myarray # Load $s0 with the address of the first value above.

# Show value retrieved by each load below.

lbu $t1, 0($s0) # Val: SOLUTION: 0x10

lbu $t2, 1($s0) # Val: SOLUTION: 0x11

lbu $t2, 5($s0) # Val: SOLUTION: 0x15

lhu $t3, 0($s0) # Val: SOLUTION: 0x1011

lhu $t4, 2($s0) # Val: SOLUTION: 0x1213

addi $s1, $0, 3

add $s3, $s0, $s1

lbu $t5, 0($s3) # Val: SOLUTION: 0x13

sll $s4, $s1, 1 SOLUTION: Note: s4 <= 3<<1 = 6

add $s3, $s0, $s4

lhu $t6, 0($s3) # Val: SOLUTION: 0x1617

sll $s4, $s1, 2 SOLUTION: Note: s4 <= 3<<2 = 12

add $s3, $s0, $s4

lhu $t7, 0($s3) # Val: SOLUTION: 0x1c1d

lw $t8, 0($s3) # Val: SOLUTION: 0x1c1d1e1f

(b) The last two instructions in the code above load from the same address. Given the context, one of those
instructions looks wrong. Identify the instruction and explain why it looks wrong. (Both instructions should
execute correctly, but one looks like it’s not what the programmer intended.)

Register s0 holds an address that the programmer decided to call myarray, so lets think of the data starting at that address
as an array. Normally, to access element i of an array that starts at address a, you load data at address a + i * s, where s is
the size of an array element. In the code fragment above, register s0 holds the starting address (a in the example). From the way
the code is written it looks like register s1 is holding the element index (i in the example). Because the sll in the last group of
four instructions is effectively multiplying s1 by 4, it looks like the load should be of the s1’th element of an array of elements of
size 4. That’s consistent with the lw, which loads a 4-byte element, and the last lhu looks out of place. The lhu that loads t6
looks fine, because its address was computed from a value of s1 multiplied by 2.

(c) Explain why the following answer to the question above is wrong for the MIPS 32 code above: “The lw

instruction should be a lwu to be consistent with the others.”
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There is no lwu, because when loading a 32-bit quantity into a 32-bit register there is no need to distinguish between a signed
and unsigned quantity. In contrast, the lhu and lh load a 16-bit quantity into a 32-bit register, the lhu sets the high 16 bits to
zero, it zero-pads, while lh sets the high 16 bits to the value of the MSB of the loaded value, it sign extends.
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Problem 3: Note: The following problem was assigned in each of the last three years, and its solution is

available. DO NOT look at the solution unless you are lost and can’t get help elsewhere. Even in that case

just glimpse. Appearing below are incorrect executions on the illustrated implementation. For each one
explain why it is wrong and show the correct execution.
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(a) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The add depends on the lw through r2, and for the illustrated implementation the add has to stall in ID until the lw reaches
WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r7 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(b) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

There is no need for a stall because the lw writes r1, it does not read r1.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

lw r1, 0(r4) IF ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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(c) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID -> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

A longer stall is needed here because the sw reads r1 and it must wait until add reaches WB.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

(d) Explain error and show correct execution.

LOOP: # Cycles 0 1 2 3 4 5 6 7

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7

The stall above allows the xor, when it is in ID, to get the value of r1 written by the add; that part is correct. But, the stall
starts in cycle 1 before the xor reaches ID, so how could the control logic know that the xor needed r1, or for that matter that
it was an xor? The solution is to start the stall in cycle 2, when the xor is in ID.

LOOP: # Cycles 0 1 2 3 4 5 6 7 SOLUTION

add r1, r2, r3 IF ID EX ME WB

xor r4, r1, r5 IF ID ----> EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7
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Problem 4: The MIPS code below is taken from the solution to 2018 Homework 1. Show the execution
of this MIPS code on the illustrated implementation for two iterations. The register file is designed so that
if the same register is simultaneously written and read, the value that will be read will be the value being
written. (In class we called such a register file internally bypassed.)

• Check carefully for dependencies.

• Focus on when the branch target is fetched and on when wrong-path instructions are squashed.

• Be sure to stall when necessary.
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The solution appears below. Each iteration includes two stalls due to dependencies, and two squashes due to the taken branch.
The first stall occurs in cycles 3 and 4 and is due to the dependence between the lbu and sb carried by t0. The second stall
occurs in cycles 7 and 8 and is due to the dependence between the first addi and the bne carried by t4. Because branches are
resolved in ME (look for the path from EX/ME.ALU back to PC) two wrong-path instructions will be fetched before the control logic
can determine that they are indeed wrong-path instructions. During the cycle at which the branch is resolved the two wrong path
instructions are squashed, this occurs below in cycle 10. The wrong-path instructions in this example are called X1 and X2, these
are whatever instructions appear in memory after the second addi.

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID EX ME WB

sb $t0, 0($a1) IF ID ----> EX ME WB

addi $t4, $t4, 1 IF ----> ID EX ME WB

bne $t4, $t5, CLOOP IF ID ----> EX ME WB

addi $a1, $a1, 1 IF ----> ID EX ME WB

X1 IF IDx

X2 IFx

CLOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

lbu $t0, 0($t4) IF ID
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