Name Solution

Computer Architecture

EE4720

Final Examination

2 May 2018, 15:00-17:00 CDT

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7

Alias e Exam Total

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (15 pts) Appearing below is the 2-way superscalar implementation used in class. As we usually
assume, fetch groups are aligned and stalls must keep instructions within a stage in order.

ID EX ME WB

Register File alu®
Addr Data [—{rsv® } Mem
Addr Data [—{ rtv® |— 7: — alu®H Port
2521 _Iaddr Datal—{rsv? } ‘| Addr
X = Ol
PC 20:16 || 1] D Datal dmg
E | Addr Data rtv rt® In out
1
TE BE 1, alu
EE; [a] -3: [a) [Mem
[— L1
[— Nig- autll | Port
Addr 150 Immed imm?© } L{Addr
Mem 150 Immed imm1 [rtvl :3 DCa)tat || mdl
Lomee | n u
. 0 —_—
Port Data 34—[Irl {Dest. reg) dStO dSt0 dSt0 =
Out ir {Dest. reg) dst! dst! dst!

(@) Show the execution of the code below on the implementation above.

MShOW execution. MCheck for dependencies!!

Solution appears below. The 1w r3 stalls two cycles because of the dependency with the 1w ril. The sw rb stalls two eycles
Decause of the dependency with the 1w r5 and because there is NO way o Dypass & value to the path to the memory port D
In connection in the illustrated ‘\mp\emenm'\on. (\ﬂ some of the ‘\mp\o,menm'\ons used in class there are DprSS paths \ead'mg 10
ME. rtv.) A common mistake was to overlook the fact that there is no DprSS p&th for the store value.

LINE1: # Address of the first lw insn below is 1000

SOLUTION
Cycle 01 2 3 45 6 7 8 9 10
1000: 1w ri, 0(r2) IF ID EX ME WB
1004: 1w r3, 0(r1l) IF ID ----> EX ME WB
1008: 1w r4, 4(r1) IF ----> ID EX ME WB
100c: 1w r5, 8(rl) IF ———-> ID EX ME WB
1010: sw r5, 12(r1) IF ID ----> EX ME WB
1014: sw r4, 16(rl) IF ID ----> EX ME WB
Cycle 01 2 3 45 6 7 8 9 10

(b) Show the execution of the code fragment below on the illustrated implementation.
EZ(ShOWIexecuﬁon,and[SZTEheck for dependencies here too.
EZfIhnftoveﬂooktheihctthatthekmanchistaken.

E{Pay attention to fetch groups and the aligned fetch restriction.

Solution appears below. The 1w is Tetehed in the cycle after the beq because it is NOT in the same feteh group as the beq. (The
first instruction in a feteh group on a 2-way superscalar has and address that's a multiple of 8, and so the least significant hex digit
must be 0 or 8.) The sw is the second instruction in the feteh group and so gets fetehed along with the 1w. Since the braneh is
taken the sw is squashed. Fortunately, the branch target, 0x2008, is & multiple of 8 and so wa Teteh o good instructions (the two
andi instructions). But dependencies stall execution.

Address of beq is 0x1004 SOLUTION
Cycle 01 2 3 4 5 6 7 8 9
1004: beq rl, rl, SKIP1 IF ID EX ME WB
1008: 1w r2, 0(r3) IF ID EX ME WB
100c: sw r4, 0(r3) IFx
1010: addi r3, r3, 4
Cycle 01 2 3 4 5 6 7 8 9
SKIP1: # Address of andi is 0x2008
2008: andi r2, r2, fff IF ID -> EX ME WB
200c: andi r6, r2, f££0 IF ID —---> EX ME WB
2010: add r7, r2, r6 IF ----> ID EX ME WB
2014: sub r8, r2, 6 IF ----> ID EX ME WB
Cycle 01 2 3 4 5 6 7 8 9

(c) Appearing below is again our 2-way superscalar MIPS. Notice that the branch hardware shown can only
provide the target for a branch in slot 1. Add hardware for providing the branch target of a branch in slot
0. Do not add hardware for checking the branch condition. Do not add control logic.

MAdd hardware for a slot-0 branch.
E{Pay attention to cost.
MBC sure the hardware computes the correct target address.

Two solutions appear below (on the Tollowing p&g@S). The Tirst one is correet, and would receive Tull credit, but it's more expensive
than it needs to be because of the additional adder. The second one does not use an additional adder.

In both solutions the PC, rather than the NPC (next program QOUT\IQF) 18 passed 1o ID. The PCis the address of the slot-0 instruetion
80 1T is labeled pcO in the diagram. It the branen is in slof 0 then the braneh target is computed in the usual way, pcO + 4 +
imm*4. If the branch is in slot 1 then 8 rather than 4 is added: TARG = pcO + 8 + imm*4. The Two code executions below
show the target address computed this way. In the Tirst example the branch is in slot 0, in the second it is in slot 1.

Example: Branch in slot 0. Target is TARG = slot_O_pc + 4 + imm0 * 4 = 0x1814
Cycle 0 1 2 3 4 5 6
1000: beq r1, r2, TARG IF ID EX ME WB # slot 0 pc = 0x1000
1004: add r4, r5, r6 IF ID EX ME WB # imm = (0x1814 - 0x1004) / 4
1008: sub r7, r8, r9 IFx # = 0x810 / 4 = 0x204
100c: or ri10, riil, ri2 IFx # TARG = 0x1000 + imm*4 + 4
Cycle 0 1 2 3 4 5 6 # = 0x1000 + 0x204x*4 + 4
TARG: # = 0x1000 + 0x810 + 4
1814: 1w r10, 0(ri1l) IF ID EX ME WB # = 0x1814
Example: Branch in slot 1. Target is TARG = slot_O_pc + 8 + imml * 4 = 0x1814
Cycle 0 1 2 3 4 5 6
1000: xori ri14, rl14, 5 1IF ID EX ME WB # slot O pc = 1000
1004: beq rl, r2, TARG IF ID EX ME WB # imm = (0x1814 - 0x1008) / 4
1008: add r4, r5, r6 IF ID EX ME WB # = 0x80c / 4 = 0x203
1008: sub r7, r8, r9 IFx # TARG = 1000 + imm*4 + 8
Cycle 0 1 2 3 4 5 6 # = 0x1000 + 0x203%4 + 8
TARG: # = 0x1000 + 0x80c + 8
1814: 1w r10, 0(ri1l) IF ID EX ME WB # = 0x1814

Solution continued on next page.

A simple version of the solution appears below. The hardware checks whether there is a branch in slot 1. If there is not &
branch in slot 1 the hardware will assume that there is a branch in slot 0. That's okay, because if neither slot has a branch then the
branch target is ignored. The signal selects the appropriate immediate and also the constant to add to the immediate, 4
or 8. The selected immediate is multiplied by four by prepending two zeros to the least-signincant side.

PC of instruction in slot 0.

Simple, unoptimized solution.

+ 4
+ 250 Q:B\
m x / Te < For slot 1 add 8, for slot 0 add 4.
Select imm /f?_‘ -
from correct oSf (& —~
I F slot. 15::; :5:0 %6'1 I D EX M E WB
is branch
0o X Register File alu® —
2521 1 addr Data —{rs\° _} Mem
20,16 Addr Data —{rtv° ~: alu®H Port
2521 Addr Data —]rsv! _M__} ‘—{Addr
20:16 I ! Bk D Datal I md¥l
Addr Data rtv 0 In out _L]_J
S5 c B c alu®
© e} ™
<0 < L } Mem
L — Imik autlH | Port
Addr 130 II Immed Il imm?© _:} - Addr
Mem % Lmes (| {5 Y L
Port 0 In Out
Dat 64 ir {Dest. reg) dStO dStO dStO —
out ol IR o) dst! dstl 1
ut {Dest. reg) st st dst

The oSt Of the solution above can be reduced by eliminating the adder above the imm X 4 \abel. Notice that the upper input to this
adder is either o 4 or an 8. Also notice that pcO must be a multiple of 8. Based on these we can eliminate the adder, and instead

use the carry-in input to the remaining adder to perform the 44 or +8.

Solution continued on next page.

The more emcient solution appears below, with cnhanges in biue. The solution below is more emmceient because it uses one less adder
than the one above. The adder is eliminated Dy using separate hardware to compute DIt 2 of the target. (B'\IS 0 and 1 of the target
are always ZQFO.) Bit 2 i3 not computed using pcO because pcO is & multiple of 8.

common mistake: not aceounting for the fact that ID.NPC is for the instruction in slot 1.

Isb

For slot 0 add 4,

2'b0 cin 1 for slot 1 add 8.
+
2_5 €
Select imm / ﬁ x(_l
from correct 3
| F slot. 15:11/ 1/ 0:0 ~ | D EX M E WB
0:0
(is branch >—
)(: 0cd X Register File alu® }—
'8 2521 Addr Data [—]rsv° I Mem
2018 1 addr Data [—] rtv° ~: alu® Port
222 _| addr Data] rsv! Addr
. M= 0] |
> PC 20:16 || 1 D Datal Imdg
Addr Data rtv rtyv© In Out :_L_,
1
31:3 g £ g £ H 2l
<0 <0 I Mem
[— L
. L — i alul Port
Addr - II Immed Il imm?© i Addr
Mem 190] i = vt D Bataf gt
n u
Port ir —\ 0 0 0
Data 64 1 {Dest. reg) dst dst dst”
7"[ir (e 1 1 1
Out {Dest. reg) dst dst dst

Problem 2: (10 pts) Appearing below is the execution of a bit more than two iterations of a loop on the
illustrated MIPS implementation. The execution shows the use of a two-stage FP compare unit, C1-C2, by
the c.1t.s instruction, but the unit isn’t shown.

ID = EX ME WB

- NPC
Int Reg File - ALU
25:21 —
+1 21 [addr Data- rsv Mem
20:16 I awH | Port
A 1 Addr Datapr-qrtivlp | HH 0
Addr DIn o D D
- PC :ﬂ 1"
rtv F—in Out
250 15:0[format mml-
304 42 immed
msb Isb
Addr
Mem (Decode) dst dst dst
\ dest. reg)
Port
Data] | R L I
Out
FP Reg File [A1
15:11 0
/ Addr Data | fsv D 1 ™ 1
20:16 2
Addr 2'd2
WE DIn 2d1 wa xw
>0 xw xw xw
we we | Lue we
i > | Lwe we we
(decode) fd wll ®
_dest. reg/ }l{ d fa %7 fd fd a
(e e) . :
uses FP add 7j:>j_D7 Stall
1) ID
4{ FP load ’
LOOP: # 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
mul.s £1, f1, £2 IF ID M1 M2 M3 M4 M5 M6 WF
c.lt.s f1, £3 IF ID =—-==mm=m=mmmm > C1 C2 WF
bclf LOOP IF ————————m—- > ID ----> EX ME WB
add.s f1, f1, f4 IF -—--> ID A1 A2 A3 A4 WF
LOOP: # 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
mul.s f1, f1, £2 IF ID —-—--—- > M1 M2 M3 M4 M5 M6 WF
c.lt.s f1, £3 IF > ID > C1 C2 WF
bclf LOOP IF ————=mmmmmmmm > ID ----> EX ME WB
add.s f1, f1, f4 IF ----> ID Al A2 A3 A4 WF
LOOP: # 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
mul.s £1, f1, £2 IF ID —----—- > M1 M2 M3 M4 M5 M6 WF
SOLUTION: ! <-—- 2nd Tter > 1 <—- 3rd Tter ..

(a) Compute the CPI of the execution of the loop above for a large number of iterations.
MCompu‘ce the CPL
MClearly show how the time for an iteration was determined, perhaps using the pipeline diagram.

The CPlis 27 = L1 =35

The time Tor the second iteration is shown on the diagram, as well as the start of the third. The second iteration takes 25—-11=14
QyQ\QS. \We expect the third and subsequent iterations 1o also take 14 QyQ\QS each because the state of the pipeline at the start of the
2nd and 3rd iterations is identical: mul.s in IF, add.s in ID, and bclf in EX.

(b) Reschedule the instructions to reduce the time needed to execute a large number of iterations of the loop.
Add a nop if that helps. A correct solution will still have many stalls.

MRe—schedule to improve performance.

MDon’t change what the loop is computing.

SOLUTION

LOOP: 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
mul.s f1, f1, £f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, £3 IF ID —-————————-—- > C1 C2 WF

add.s f1, f1, f4 IF ————————————- > ID A1 A2 A3 A4 WF

bclf LOOP IF ID -> EX ME WB

nop IF -> ID EX ME WB

LOOP: 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
mul.s f1, f1, £f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, £3 IF ID ———-————————- > C1 C2 WF

add.s f1, f1, f4 IF ————————————- > ID Al A2 A3 A4 WF

bclf LOOP IF ID -> EX ME WB

nop IF -> ID EX ME WB

LOOP: 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
mul.s f1, f1, £f2 IF ID M1 M2 M3 M4 M5 M6 WF

ALT SOLUTION (Student)

LOOP: 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
c.lt.s f1, £3 IF ID C1 C2 WF

add.s f1, f1, f4 IF ID Al A2 A3 A4 WF

bclf LOOP IF ID -> EX ME WB

mul.s f1, f1, £f2 IF -> ID -> M1 M2 M3 M4 M5 M6 WF

LOOP: 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
c.lt.s f1, £3 IF > ID ————————————- > C1 C2 WF

add.s f1, f1, f4 IF -———————————- > ID Al A2 A3 A4 WF

bclf LOOP IF ID -> EX ME WB

mul.s f1, f1, f2 IF -> ID -> M1 M2 M3 M4 M5 M6 WF

LOOP: 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
c.lt.s f1, £3 IF -> ID -—-——————————- > C1 C2 WF

Problem 3: (20 pts) The MIPS implementation on the next page shows the two stages of the comparison
units, C1 and C2, but they are not connected to anything. The illustration also shows an FCC register that
will hold the floating-point condition code value computed by compare instructions such as c.1t.s. Connect
the comparison units and the FCC register so that they operate correctly and as described by the check items
below. Notice that logic to detect FP branch instructions and FP compare instructions has been added to
the ID stage near the bottom.

LOOP: #Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
mul.s f1, f1, £2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, £3 IF ID --——————————- > C1 C2 WF

bclf LOOP IF -———————————- > ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID Al A2 A3 A4 WF

#Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MPI‘OVide connections to C1, C2, and the two FCC inputs so that the code above executes as shown.

MModify the control logic so that a compare does not arrive in WF in the same cycle as other FP instructions.
(This is despite the fact that compares do not write the FP register file.)

MModify the control logic so that the Stall ID signal is asserted for dependencies from compare to
branches, such as occurs above with the bc1f.

MAS always, pay attention to cost and performance and Mdon’t break existing functionality.

Solution appears below. The connections from the C1 and C2 units to the FCC are shown in blue. Of course, pipeline latehes are
added 5o that each unit has the better part of a cycle to compute its result. The logic preventing a compare from arriving in WE
at the same cycle 3 another instruction appears in green. Note that unlike other instructions that enter the pipeline at A2/M4,
compare instructions do not inject we nor £d signals into the pipeline because compare instructions don't write the FP register file.
Finally, logie to stall 2 branch dependent on & compare appears in purple.

common Mistakes. Using the we (WNIQ Qﬂﬁb\@) signal for the FP register file as the we for FCC. That won't work because we don't
want instructions like add. s, which write the FP register file, 1o ehange the FCC and we don't want compare instructions to change
the FP register ile.

Another common mistake is putting logic in the wrong stage. Control logic that cnecks Tor things like stall conditions must connect
10 those stages holding the instructions that are involved. Use a pipeline execution diagram to determine those stages. For example,
consider the c.1t.s/bclf stall from the example apbove. The stall oceurs when the bc1f isin ID and the c.1t.s I in stages
C1 or C2. A common mistake was forgetting about C2.

NPC
Int Reg File T— AL
2521 [addr Data |- rsv — Mem
20:16 Addr Data rtv — A | Port
HAddr
Addr Dln T D D H{MD
———JHrvin__out
15:0|format
immed MM
(Decode) B
(dest. reg) dst gt =
Path for compare
To féi'lfo”/ —J insn to FCC.
ogic.
(@]
rAcmp i
_ _ _ — WF
FP Reg File .
1511 Iaddr Data |-H fsv j}_ i ;
20:16 Addr Data | ftv D — ;
Addr 242
WE DIn le:D “ “ 2'd0 xw w XW
we we Dw we we —4[%_? we we we
(decode) fd] I
(uses FP mul) — AL- - TD{_- B -T

FP branch

——/(FP compare)
uses FP add

56

—— FPload)

10

Stall if compare in ID would
reach WF at same time
as other insn.

Stall
;% ID

o

Stall if

FP branch in ID
and compare
in C1 or C2.

Problem 4: (16 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on two systems, each with a different branch
predictor. All systems use a 2'? entry BHT. One system has a bimodal predictor and one system has a local
predictor with an 8-outcome local history.

Branch B2 starts with a random outcome, then repeats that same outcome two more times, followed by
another random outcome followed by two more repeats of that. The random outcome is T with probability
.3 and is independent of other outcomes. The following are possible B2 outcome sequences: TTT NNN NNN
TTT TTT. Note that the number of consecutive T’s or N’s must be a multiple of 3 and so the following is not
a possible sequence of outcomes for B2: TT NN T NNNN T.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

Bi: T T N T T T N N T T N T TT NN

B2: r r r g 9q 9 s s s ...

MWhat is the accuracy of the bimodal predictor on branch B1?

Based on the work shown below, the aceuracy is % The gecuraey is based on the second repeat of the pattern because the 2-Dit
counter was the same value af the beginning and end, 1. In contrast, the counter was 0 at the start of the Trst oceurrence of the
pattern and 1 af the end, 80 whatever happened Tor those Nrst 8 outeomes can't be used Lo predict accuracy.

o1 2 1 2 3 3 2 1 2 3 2 3 3 3 2 1 <-- 2-bit counter
B1: T T N T T T N N T T N T T T N N
X X X X X X X b4 X X <-- Pred Outcome

-——= -—= -- <-- repeating

MWhat is the accuracy of the bimodal predictor on branch B2?

Thera are two ways to start a 3-outcome sequence, T o N of course. To datermine the numbar of correet predietions we need to Know
what preceded the sequence, which could be 3 T's or 3 N's. Tha Tour cases are shown in the table below. The Freq column value
indicates how frequently the case oceurs. The Correct column value indicates the number of correct pradictions in the last &
outcomes. Note that we can't determine the number of predictions in the first three outeomas because we don't know what preceded
them. Acc is the accuracy, and Weighted is the accuracy weighted by frequency. Totaling the last column gives the prediction
aceuraey, .72 or 72%.

Freq Correct Acc Weighted

TTT.TTT: .09 3 1 .09
NNN.TTT: .21 1 1/3 .07
NNN.NNN: .49 3 1 .49
TTT.NNN: .21 1 1/3 .07

.72

B(What is the accuracy of the local predictor on branch B1?

Since the pattern for branch B1 is less than the local h\St()Ty and it repeats pQTTQQUy and because we are assuming no colligions in
the pTQ(ﬂQtOF, the local predmor aceuracy is 100%.

11

B(What is the accuracy of the local predictor on branch B2?

Because there are always length-three sequences and because We are assuming no interference, the local predictor will always predict
the second and third oceurrence With 100% aceuracy. We expect that the 2-bit counter for the first oceurrence will predict N since that
i$ The more common outeome. ASsuming that it always predicts N the prediction aceuracy for the first oceurrence is 70%. Combining,
these yields -2 = 90%.

Freq Corr Wht

T.T: .09 2 .18
N.T: .21 2 .42
N.N: .49 3 1.47
T.N: .21 3 63
2.70 / 3

12

(b) Appearing below is a diagram of a local predictor, showing in detail the logic for predicting the instruction
in IF and for updating the predictor for the resolving branch. Modify the diagram so that it is a global
predictor with an 8-outcome global history.

MModify so that it is a global predictor.
MRemove hardware that’s no longer needed.
B{Be sure to show the GHR (global history register).

Solution appears below, added nardware appears in blue and red exes mark removed hardware, cut wires, ete. The BHT no longer
stores local branch history (nor any otner kind of h'\St()W), instead the GHR is used 1o store global braneh Nistory. In this solution
the GHR i3 not updated until the branch resolves. (m dynamically seneduled systems the GHR might be updated in IF using the
predicted direction, when the branch resolves the GHR is updated again only when the prediction turns out to be wrong. This is
important in dynamically seheduled systems because there ean be many branches in mght.)

sc A Ak o A
S > PC IF gel e, 85e 1D
o SS| [35385
S 0 o5 252
ie) all ak Q< S
E PC }—- e @
I BHT 53
o 15:2 g9
S +— a d H Is Branch 2 =
-~ .. 5 C
_t‘) g g
SR we P
U © —]a — 2 Q
~ 3 15:2 e
Q M © %
S & Is Branch 1:1 % s
= R | .. Do
L N ~ ~ o
8 % g Target | B Q
/ msb 5.
&5 §, 6:0 7:0 x_>|<4_/'BHT no longer
o . .
= — Isb 7{ stores history,
g Updatle% / GHR used instead.
Deqaioby
history o' ‘/x 7:0 Global History
G PHT
—we 1 a d a
> | | 2-bit
we counter
tobgt 7 a din
Mhistory / 7:0

that had been

Post-resolve
used for prediction.

2-b counter.

Predictor Update Hardware
(resolve) Shown in Green

T Outcome (1=T, 0=N)

2 Pre-resolve 2-b counter

Target

PC (resolve)

Is Branch (1, branch; 0, anything else.)
1[0} T
Pre-Resolve D{{T-Hstory

obe}s o) J wolH

‘(panjosal youedq alaym

13

Problem 5: (10 pts) The diagram below is for a 64 MiB, 4-way set-associative cache with a line size of
256 B, a bus width (w) of 8B, for a 64b address space. Helpful facts: 64 MiB = 64 x 220 B = 22°B and
256 = 28,

(a) Answer the following, formule are fine as long as they consist of grade-time constants.

MFHI in the blanks in the diagram.

CpPU °

Data In
Addr
Tag
Addr
Data
[23'.8 I 000 [23'.8 I Out
Data Data
Addr Addr
Data Data
233 Out 233 Out

MComplete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Tag Index Offset

Address: ’ | | ‘
63 24 23 8 7 3 2 0

MMemory Needed to Implement ErIndicate Unit!!:
It's the cache capacity, 64 MiB, plus 4 x 22478 (64 — 24 + 1) b = 10747904 b.

B(Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

The cache above is 64 MiB and 4-way set associative. In 4 direct mapped cache there is just one way with four times the storage

0 & way in the cache above. To get four times the number of entries the number of index bits is increased by two, and 8o the index
DITS Will start at position 26 instead of 24. The other DIt POSItions remain the same.

Tag Index Ofiset

Address: |
63 26 25 8 71 3 2 0

14

The problem on this page is not based on the cache from Part a. The code in the problem belows run on
a cache with a line size of 256 B (which is 28 B). Each code fragment starts with the cache empty; consider
only accesses to the arrays.

(b) Find the hit ratio executing the code below.
int sum = 0;
short *a = 0x2000000; // sizeof (short) ==
int 1i;

int ILIMIT = 1 << 11; // = 21

for (i=0; i<ILIMIT; i++) sum += al[i];

MWhat is the hit ratio running the code above? Show formula and briefly justify.

The line size of 28 = 256 Dytes i given. The size of an array element, whieh is of type short, is 2 = 21 B, and s0 there are
28/21 = 28=1 = 27 = 128 clements per line. The first access, at =0, Will Miss but bring in a line with 27 elements, and so the
next 27 — 1 = 127 accesses Will be to data on the ling, Nits. The access at 1=128 will miss and the process will repeat. Therefore

i inia 127

15

Problem 6: (8 pts) Appearing below is a MIPS implementation that includes hardware for interrupts
(hardware interrupts, exceptions, and traps). An exception code, exc, is collected and passed down the
pipeline. Its value indicates the type of hardware interrupt, exception, or trap that has been encountered, a
value of 0 indicates no interrupt of any kind.

Upper 16 bits and e “”’L;gg il: msb
16'h

lower 16 bits of
Isb

MIPS' ISA-defined >
Exception handler

handler locations. \maooo
160100
160200 il
address, for example,
exception

0xbfc00200.
ID EX ME WB
NPC T* ALU
25:21 —
+1 Addr Dataf{rsv Mem
> ——
g 20:16 ALV | Port
- Addr Data rtvi |
T 4 [HA
xC ddr N]
> PSR > PC Addr DiIn R y DIn 4B
} rtv j-é S
|prv ‘ priv |- 15:0| format | S exc
immed IMM— priv |—
30 Zlb% priv ‘ exc
msb Isb] decode ’;Qi
Addr 2 == e e b
<

s !/ T
N_Ms nop
Mem ~~| decode{ | mop / mop

dst dst
Port Data| |z | / 5'b0:|D dsth
Out / Squash/

Hardware interrupt code
(or zero) from external
devices.

P —

Processor Status Register —_

——— Exception code, or zero for no exception. MSb of non-zero exception code is always 1.

16

(a) Notice that the logic in the ID stage examines the opcode of the instruction in ID as well
as the value of ID.priv. Hint: priv is an abbreviation for privileged. Some opcode values raise exceptions
only when ID.priv is zero, others raise exceptions whether or not ID.priv is zero.

MDescribe an instruction that raises an exception in ID only if ID.priv is zero.
Any privileged instruction, for example mtcO, MOVe To CO-Proeassor zero.
B(Why is it important that such an instruction raise an exception?

Itis important that such instructions raise exceptions so that restrictions can be p\ﬁQQd on user-mode code (TOT which ID.privis
ZQYO), for QXM“‘)\Q| pre\/ent'mg user-mode code from unfettered access to \/O devices. PN\/\\QgQG instructions can control access to
sueh davices.

Common Mistake: An incorrect answer would be a load instruction that accesses a privileged address. Yes, such an
instruetion would raise an QXQQPUOTL but it would do so0 in the ME St&g@. The ID St&gQ 18 100 Qﬁf\y because the address would not
nave been Qomputed, and the hardware for \OOK\ﬂg up p@rm'\ss'\ons is in the memory p()ft.

MDescribe an instruction that raises an exception in ID whether or not ID.priv is zero.

An instruction with an unrecognized opcode. This might be 4 nonexistent opeode. In ¢lassroom examples we use the mnemonic ant
Tor such instructions. An unrecognized opeode might be an opeode defined by the 1SA but not implemented in the hardware. Many
ISAS allow implementations to not implement certain instructions with the expectation that the OS would emulate these in software
whan they raise exceptions. For example, SPARC has quad-precision floating point instructions which are rarely implemented. When
an instruction like faddq £0, f£4, £8 Tries 10 execute it raises an exception and the exception handler would compute the
quad-pracision result, place it in registers £0-£3, and then return execution to the instruetion after faddq.

Common Mistake: An incorrect answer would be a divide instruction with a zero divisor. Yes, such an instruction raises an
axcaption regardiess of privilege lavel, but it does so in the FP pipeling, not in ID.

(b) The illustrated hardware squashes the faulting instruction in ME, but no hardware is shown to squash any
instructions that may be in the stages before ME nor for the stage after ME. That hardware may have been
omitted for simplicity (the same reason that control logic is omitted) or because it is not needed.

MTO implement precise exceptions should the instructions in the stages before ME be squashed? MExplain
in terms of the handler and what would go wrong if instructions were not treated the right way.

Yes, they should be squashed because they come after the Taulting instruction and for the exception to be precise no instruction after
the Taulting instruction should QOTT\p\QIQ axecution (WTWQ 4 register value, Qh&ﬂgé a memory location, QIQ). SUPPOSQ the instruction
in EX writes r2 and was allowed to Q()mp\QIQ| and suppose the T&U\Uﬂg instruction uses r2 as 4 source. Then the handler would not
De able To re-try the faulting instruction because r2 Nas the wrong value.

A common mistake was o deseribe the stages before ME as carrying instruetions before (ST\OU\G be QTIQY) the instruction in ME and WB
48 Carrying the instruction after (ShOU\(l he DQTOFQ) the one in ME. For those prone to confusion in rushed situations, just remember
that those before you on line at the sandwich shop arrived arter you did.

MTO implement precise exceptions should the instructions in the stage after ME be squashed? MExplain
in terms of the handler and what would go wrong if instructions were not treated the right way.

No. For the exception to be precise all instructions bHefore the Taulting instruction must execute normally. Suppose the instruction

in WB s 10 write r3 but was squashed before it could do $0. Further, suppose the Taulting instruction uses r3 as 4 source. It the
handler tries to re-execute the Taulting instruction it Won't execute correctly because r3 Was Not written.

17

Problem 7: (21 pts) Answer each question below.

(a) Show the encoding of the following MIPS instructions. Write the instruction name in opcode or func
field values that cannot be determined.

0x1000: beq ri10, ril, TARG
0x1004: add r7, r8, r9

TARG:
0x1034: 1w rl12, 14(r15)

E{Encoding for beq from code fragment above. MPay attention to the branch target.

The solution appears below. The immediate Nleld 1s encoded with the displacement from the delay Slot to the Target in units of
instructions. That is, the immediate value is; 103416=100d1s — 3016 — (¢,

A common mistake was to Torg@t 1o divide Dy four.
Opcode RS RT Immed

MIPS I: ‘ Deq = 0X4| 2| 3 | oxC
31 26 25 21 20 16 15 0

MEncoding for add from code fragment above:
Opcode RS RT RD SA Function
MIPS R | 0] 8] 9] 7] 0] add = 0x20
31 26 25 21 20 16 15 11 10 6 4 0

MEncoding for 1w from code fragment above:

Opcode RS RT Immed
MIPS |- ‘ W = 0X23| 15| 12| 14
31 26 25 21 20 16 15 0

(b) MIPS has one kind of memory addressing for all load and store instructions, such as in 1w r1, 2(r3)
where the immediate, 2, is added to the value in r3. A CISC ISA might have two versions of the load, 1w
r1, (r3), which lacks an immediate (the immediate would be zero in MIPS), and 1wi r1, 2(r3) for when
an immediate is needed.

MWhat would be the benefit for the CISC ISA of having the no-immediate version of the 1w?

The ingtruction would be shorter, Sa\/'mg instruction cache space and feteh bandwidth. 1t the CISC '\mp\emenmt'\on were not p'\pe\mo,d
it Might De able To execute the no-immediate instruction in one less eycle than the immediate version because it would not need a
cycele to add the immediate to the base. Note that modern CISC implementations operate by transiating CISC instructions into RISC
instruetions, so the execution time benefit would not be realized.

MWhy would MIPS and other RISC ISAs not realize the same benefit?

Because all instructions are the same size and because all integer instructions, including loads, go through the same pipeline stages.

18

(c) A design team is considering removing a bypass connection to the ALU and adding a bypass connection
to the branch resolve unit. This won’t change the cost, they hope it will improve performance. “Simulation
of this design change shows that performance drops by 5%,” a sad-faced engineer announces. “We forgot to
talk to the compiler people!,” another excitedly points out, splashing hope and excitement around the room.

B(What should they ask the compiler people?

Tth should ask the Qomp'\\er pQOp\Q 10 prepare a version of the Qomp'\\er That will optimize for The new bypElSS locations. In pMUQU\M,
instructions should be scheduled to avoid T\QQG\ﬂg the removed bprSS p&th and instructions WIItIng a register needed by 4 branch can
De moved closer to the branch than Ih@y would in the current '\mp\émemat'\on.

Grading Note. Many students did not see the compiler as somaething that could and should be moditied to it the implementation.

(d) Someone preparing the SPECcpu benchmarks for their company’s next product (currently under de-
velopment) decides to replace one of the benchmark programs with an improved version, one which better
reflects that company’s customers. Note: the emphasis below was added after the original exam, as was the
phrase “not to market.”

MShould the company use the SPECcpu benchmarks in this way to develop (but not to market) their
product?

Yes. 1T they are using it internally SPEC rules don't apply. As the problem states, the substituted benenmark improves the relevance
of the results.

With the substituted benchmark program the SPEC scores are higher (better). The company decides to
release these higher SPEC results without mentioning the substitution.

MHOW does the design of SPECcpu make it likely that they will get caught?

Short Answer: Tth must disclose a config file, whieh competitors Will surely use to reproduce thaeir result, and they won't stay quiet
when the results don't maten.

They must provide and make public o config file that can be used to automatically run the benchmarks. Others attempting 1o run
SPECepu with their conng file (&ﬂd using their eomputér) will quickly diseover that the results don't maten because those others will
De running the original SPEC benchmarks, not the substituted one.

(e) Compiler optimization is more important for a supercalar implementation than a scalar implementation.
MOptimization is more important for superscalar than scalar because:

MThe important optimization is:

IT's more '\mpomm Decause there are more situations where results can't be Dyp&SSQG. For examp\e, GQPQY\GQM instructions in the

same feteh group. A stall also has 4 larger relative impact on performance. The important optimization is instruction seheduling,
that's needed to avoid stalls.

Grading Note: Many students used the term dependency Where hazard should be used. This is the correct usage. because there
are multiple instructions in a stage there are more data hazards.

19

