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Problem 1: (15 pts) Appearing below is the 2-way superscalar implementation used in class. As we usually
assume, fetch groups are aligned and stalls must keep instructions within a stage in order.
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(a) Show the execution of the code below on the implementation above.

�Show execution. �Check for dependencies!!

Solution appears below. The lw r3 stalls two cycles because of the dependency with the lw r1. The sw r5 stalls two cycles
because of the dependency with the lw r5 and because there is no way to bypass a value to the path to the memory port D
In connection in the illustrated implementation. (In some of the implementations used in class there are bypass paths leading to
ME.rtv.) A common mistake was to overlook the fact that there is no bypass path for the store value.

LINE1: # Address of the first lw insn below is 0x1000

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10

0x1000: lw r1, 0(r2) IF ID EX ME WB

0x1004: lw r3, 0(r1) IF ID ----> EX ME WB

0x1008: lw r4, 4(r1) IF ----> ID EX ME WB

0x100c: lw r5, 8(r1) IF ----> ID EX ME WB

0x1010: sw r5, 12(r1) IF ID ----> EX ME WB

0x1014: sw r4, 16(r1) IF ID ----> EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10
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(b) Show the execution of the code fragment below on the illustrated implementation.

�Show execution and �check for dependencies here too.

�Don’t overlook the fact that the branch is taken.

�Pay attention to fetch groups and the aligned fetch restriction.

Solution appears below. The lw is fetched in the cycle after the beq because it is not in the same fetch group as the beq. (The
first instruction in a fetch group on a 2-way superscalar has and address that’s a multiple of 8, and so the least significant hex digit
must be 0 or 8.) The sw is the second instruction in the fetch group and so gets fetched along with the lw. Since the branch is
taken the sw is squashed. Fortunately, the branch target, 0x2008, is a multiple of 8 and so we fetch two good instructions (the two
andi instructions). But dependencies stall execution.

# Address of beq is 0x1004 SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9

0x1004: beq r1, r1, SKIP1 IF ID EX ME WB

0x1008: lw r2, 0(r3) IF ID EX ME WB

0x100c: sw r4, 0(r3) IFx

0x1010: addi r3, r3, 4

# Cycle 0 1 2 3 4 5 6 7 8 9

SKIP1: # Address of andi is 0x2008

0x2008: andi r2, r2, 0xfff IF ID -> EX ME WB

0x200c: andi r6, r2, 0xff0 IF ID ----> EX ME WB

0x2010: add r7, r2, r6 IF ----> ID EX ME WB

0x2014: sub r8, r2, r6 IF ----> ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9
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(c) Appearing below is again our 2-way superscalar MIPS. Notice that the branch hardware shown can only
provide the target for a branch in slot 1. Add hardware for providing the branch target of a branch in slot
0. Do not add hardware for checking the branch condition. Do not add control logic.

�Add hardware for a slot-0 branch.

�Pay attention to cost.

�Be sure the hardware computes the correct target address.

Two solutions appear below (on the following pages). The first one is correct, and would receive full credit, but it’s more expensive
than it needs to be because of the additional adder. The second one does not use an additional adder.

In both solutions the PC, rather than the NPC (next program counter) is passed to ID. The PC is the address of the slot-0 instruction
so it is labeled pc0 in the diagram. If the branch is in slot 0 then the branch target is computed in the usual way, pc0 + 4 +

imm*4. If the branch is in slot 1 then 8 rather than 4 is added: TARG = pc0 + 8 + imm*4. The two code executions below
show the target address computed this way. In the first example the branch is in slot 0, in the second it is in slot 1.

# Example: Branch in slot 0. Target is TARG = slot_0_pc + 4 + imm0 * 4 = 0x1814

# Cycle 0 1 2 3 4 5 6

0x1000: beq r1, r2, TARG IF ID EX ME WB # slot 0 pc = 0x1000

0x1004: add r4, r5, r6 IF ID EX ME WB # imm = ( 0x1814 - 0x1004 ) / 4

0x1008: sub r7, r8, r9 IFx # = 0x810 / 4 = 0x204

0x100c: or r10, r11, r12 IFx # TARG = 0x1000 + imm*4 + 4

# Cycle 0 1 2 3 4 5 6 # = 0x1000 + 0x204*4 + 4

TARG: # = 0x1000 + 0x810 + 4

0x1814: lw r10, 0(r11) IF ID EX ME WB # = 0x1814

# Example: Branch in slot 1. Target is TARG = slot_0_pc + 8 + imm1 * 4 = 0x1814

# Cycle 0 1 2 3 4 5 6

0x1000: xori r14, r14, 5 IF ID EX ME WB # slot 0 pc = 0x1000

0x1004: beq r1, r2, TARG IF ID EX ME WB # imm = ( 0x1814 - 0x1008 ) / 4

0x1008: add r4, r5, r6 IF ID EX ME WB # = 0x80c / 4 = 0x203

0x1008: sub r7, r8, r9 IFx # TARG = 0x1000 + imm*4 + 8

# Cycle 0 1 2 3 4 5 6 # = 0x1000 + 0x203*4 + 8

TARG: # = 0x1000 + 0x80c + 8

0x1814: lw r10, 0(r11) IF ID EX ME WB # = 0x1814

Solution continued on next page.

4



A simple version of the solution appears below. The is branch hardware checks whether there is a branch in slot 1. If there is not a
branch in slot 1 the hardware will assume that there is a branch in slot 0. That’s okay, because if neither slot has a branch then the

branch target is ignored. The is branch signal selects the appropriate immediate and also the constant to add to the immediate, 4
or 8. The selected immediate is multiplied by four by prepending two zeros to the least-significant side.
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imm × 4

Simple, unoptimized solution.

The cost of the solution above can be reduced by eliminating the adder above the imm× 4 label. Notice that the upper input to this
adder is either a 4 or an 8. Also notice that pc0 must be a multiple of 8. Based on these we can eliminate the adder, and instead
use the carry-in input to the remaining adder to perform the +4 or +8.

Solution continued on next page.
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The more efficient solution appears below, with changes in blue. The solution below is more efficient because it uses one less adder
than the one above. The adder is eliminated by using separate hardware to compute bit 2 of the target. (Bits 0 and 1 of the target
are always zero.) Bit 2 is not computed using pc0 because pc0 is a multiple of 8.

Common mistake: not accounting for the fact that ID.NPC is for the instruction in slot 1.
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Problem 2: (10 pts) Appearing below is the execution of a bit more than two iterations of a loop on the
illustrated MIPS implementation. The execution shows the use of a two-stage FP compare unit, C1-C2, by
the c.lt.s instruction, but the unit isn’t shown.
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15:0

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID -------> M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF -------> ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID -------> M1 M2 M3 M4 M5 M6 WF

# SOLUTION: ! <--- 2nd Iter ------------------------> ! <-- 3rd Iter ..
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(a) Compute the CPI of the execution of the loop above for a large number of iterations.

�Compute the CPI.

�Clearly show how the time for an iteration was determined, perhaps using the pipeline diagram.

The CPI is 25−11

4
= 14

4
= 3.5.

The time for the second iteration is shown on the diagram, as well as the start of the third. The second iteration takes 25−11 = 14
cycles. We expect the third and subsequent iterations to also take 14 cycles each because the state of the pipeline at the start of the
2nd and 3rd iterations is identical: mul.s in IF, add.s in ID, and bc1f in EX.

(b) Reschedule the instructions to reduce the time needed to execute a large number of iterations of the loop.
Add a nop if that helps. A correct solution will still have many stalls.

�Re-schedule to improve performance.

�Don’t change what the loop is computing.

# SOLUTION

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

add.s f1, f1, f4 IF -------------> ID A1 A2 A3 A4 WF

bc1f LOOP IF ID -> EX ME WB

nop IF -> ID EX ME WB

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

add.s f1, f1, f4 IF -------------> ID A1 A2 A3 A4 WF

bc1f LOOP IF ID -> EX ME WB

nop IF -> ID EX ME WB

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

# ALT SOLUTION (Student)

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

c.lt.s f1, f3 IF ID C1 C2 WF

add.s f1, f1, f4 IF ID A1 A2 A3 A4 WF

bc1f LOOP IF ID -> EX ME WB

mul.s f1, f1, f2 IF -> ID -> M1 M2 M3 M4 M5 M6 WF

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

c.lt.s f1, f3 IF -> ID -------------> C1 C2 WF

add.s f1, f1, f4 IF -------------> ID A1 A2 A3 A4 WF

bc1f LOOP IF ID -> EX ME WB

mul.s f1, f1, f2 IF -> ID -> M1 M2 M3 M4 M5 M6 WF

LOOP: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

c.lt.s f1, f3 IF -> ID -------------> C1 C2 WF
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Problem 3: (20 pts) The MIPS implementation on the next page shows the two stages of the comparison
units, C1 and C2, but they are not connected to anything. The illustration also shows an FCC register that
will hold the floating-point condition code value computed by compare instructions such as c.lt.s. Connect
the comparison units and the FCC register so that they operate correctly and as described by the check items
below. Notice that logic to detect FP branch instructions and FP compare instructions has been added to
the ID stage near the bottom.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

�Provide connections to C1, C2, and the two FCC inputs so that the code above executes as shown.

�Modify the control logic so that a compare does not arrive in WF in the same cycle as other FP instructions.
(This is despite the fact that compares do not write the FP register file.)

�Modify the control logic so that the Stall ID signal is asserted for dependencies from compare to
branches, such as occurs above with the bc1f.

�As always, pay attention to cost and performance and �don’t break existing functionality.

Solution appears below. The connections from the C1 and C2 units to the FCC are shown in blue. Of course, pipeline latches are
added so that each unit has the better part of a cycle to compute its result. The logic preventing a compare from arriving in WF
at the same cycle as another instruction appears in green. Note that unlike other instructions that enter the pipeline at A2/M4,
compare instructions do not inject we nor fd signals into the pipeline because compare instructions don’t write the FP register file.
Finally, logic to stall a branch dependent on a compare appears in purple.

Common Mistakes: Using the we (write enable) signal for the FP register file as the we for FCC. That won’t work because we don’t
want instructions like add.s, which write the FP register file, to change the FCC and we don’t want compare instructions to change
the FP register file.

Another common mistake is putting logic in the wrong stage. Control logic that checks for things like stall conditions must connect
to those stages holding the instructions that are involved. Use a pipeline execution diagram to determine those stages. For example,
consider the c.lt.s/bc1f stall from the example above. The stall occurs when the bc1f is in ID and the c.lt.s is in stages
C1 or C2. A common mistake was forgetting about C2.
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Problem 4: (16 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on two systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor and one system has a local
predictor with an 8-outcome local history.

Branch B2 starts with a random outcome, then repeats that same outcome two more times, followed by
another random outcome followed by two more repeats of that. The random outcome is T with probability
.3 and is independent of other outcomes. The following are possible B2 outcome sequences: TTT NNN NNN

TTT TTT. Note that the number of consecutive T’s or N’s must be a multiple of 3 and so the following is not
a possible sequence of outcomes for B2: TT NN T NNNN T.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T T N T T T N N T T N T T T N N ...

B2: r r r q q q s s s ...

�What is the accuracy of the bimodal predictor on branch B1?

Based on the work shown below, the accuracy is 4

8
. The accuracy is based on the second repeat of the pattern because the 2-bit

counter was the same value at the beginning and end, 1. In contrast, the counter was 0 at the start of the first occurrence of the
pattern and 1 at the end, so whatever happened for those first 8 outcomes can’t be used to predict accuracy.

0 1 2 1 2 3 3 2 1 2 3 2 3 3 3 2 1 <-- 2-bit counter

B1: T T N T T T N N T T N T T T N N ...

x x x x x x x x x x <-- Pred Outcome

------------------------ <-- repeating

�What is the accuracy of the bimodal predictor on branch B2?

There are two ways to start a 3-outcome sequence, T or N of course. To determine the number of correct predictions we need to know
what preceded the sequence, which could be 3 T’s or 3 N’s. The four cases are shown in the table below. The Freq column value
indicates how frequently the case occurs. The Correct column value indicates the number of correct predictions in the last 3

outcomes. Note that we can’t determine the number of predictions in the first three outcomes because we don’t know what preceded
them. Acc is the accuracy, and Weighted is the accuracy weighted by frequency. Totaling the last column gives the prediction
accuracy, .72 or 72%.

Freq Correct Acc Weighted

TTT.TTT: .09 3 1 .09

NNN.TTT: .21 1 1/3 .07

NNN.NNN: .49 3 1 .49

TTT.NNN: .21 1 1/3 .07

--------------------------------

.72

�What is the accuracy of the local predictor on branch B1?

Since the pattern for branch B1 is less than the local history and it repeats perfectly and because we are assuming no collisions in
the predictor, the local predictor accuracy is 100%.
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�What is the accuracy of the local predictor on branch B2?

Because there are always length-three sequences and because we are assuming no interference, the local predictor will always predict
the second and third occurrence with 100% accuracy. We expect that the 2-bit counter for the first occurrence will predict N since that
is the more common outcome. Assuming that it always predicts N the prediction accuracy for the first occurrence is 70%. Combining
these yields .7+2

3
= 90%.

Freq Corr Wht

T.T: .09 2 .18

N.T: .21 2 .42

N.N: .49 3 1.47

T.N: .21 3 .63

---------------------

2.70 / 3
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(b) Appearing below is a diagram of a local predictor, showing in detail the logic for predicting the instruction
in IF and for updating the predictor for the resolving branch. Modify the diagram so that it is a global
predictor with an 8-outcome global history.

�Modify so that it is a global predictor.

�Remove hardware that’s no longer needed.

�Be sure to show the GHR (global history register).

Solution appears below, added hardware appears in blue and red exes mark removed hardware, cut wires, etc. The BHT no longer
stores local branch history (nor any other kind of history), instead the GHR is used to store global branch history. In this solution
the GHR is not updated until the branch resolves. (In dynamically scheduled systems the GHR might be updated in IF using the
predicted direction, when the branch resolves the GHR is updated again only when the prediction turns out to be wrong. This is
important in dynamically scheduled systems because there can be many branches in flight.)

PC

2-bit

counter

1:1

Target

nter.

2

Target

+1

-1

Outcome , 0=N)

Pre-resolve 2-b counter

IF ID

T
ra

v
e
ls

 w
it

h
 i
n
s
tr

u
c
ti

o
n
,

u
s
e
d
 w

h
e
re

 b
ra

n
c
h

 r
e
s
o
lv

e
d
.

F
ro

m
 M

E
 (o

r s
ta

g
e

w
h
e
re

 b
ra

n
c
h
 re

s
o
lv

e
d
).

BHT

a d

a d in

PC

15:2

15:2

we

PC (resolve)

Target

Is Branch (1, branch; 0, anything else.)

P
C

 (
re

s
o
lv

e
)

Is Branch

Is Branch

P
re

d
ic

to
r 

U
p
d
a
te

 H
a
rd

w
a
re

(r
e
s
o
lv

e
) 

S
h

o
w

n
 i
n
 G

re
e
n

P
re

d
ic

to
r 

P
re

d
ic

ti
o
n
 H

a
rd

w
a
re

S
h
o
w

n
 i
n

 B
la

c
k

P
re

d
ic

te
d

D
ir

e
c
ti

o
n

(N
 o

r 
T
)

P
re

d
ic

te
d

T
a
rg

e
t

P
re

d
ic

te
d

Is
 B

ra
n

c
h

PHT

a d

a d in
we

Local History
7:0

Updated
local
history

Local history

that had been

used for prediction.

6:0

7:0

lsb

msb

Pre-Resolve Local History

7:0

G
H

R

we

Global History7:0

global

Global

BHT no longer
stores history, 
GHR used instead.

Global

13



Problem 5: (10 pts) The diagram below is for a 64MiB, 4-way set-associative cache with a line size of
256B, a bus width (w) of 8B, for a 64 b address space. Helpful facts: 64MiB = 64 × 220 B = 226 B and
256 = 28.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

Addr
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Data

Addr
Data
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=Tag
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CPU

Addr

Data In

logic

hit
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Tag

Data

Addr
Data
Out
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64 b

63:24

23:3

63:24

23:8 23:8

23:3

�Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

63 24

Index

23 8

Offset

7 3 2 0

�Memory Needed to Implement �Indicate Unit!!:

It’s the cache capacity, 64MiB, plus 4× 224−8 (64− 24 + 1) b = 10747904 b.

�Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

The cache above is 64MiB and 4-way set associative. In a direct mapped cache there is just one way with four times the storage
of a way in the cache above. To get four times the number of entries the number of index bits is increased by two, and so the index
bits will start at position 26 instead of 24. The other bit positions remain the same.

Address:

Tag

63 26

Index

25 8

Offset

7 3 2 0
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The problem on this page is not based on the cache from Part a. The code in the problem belows run on
a cache with a line size of 256B (which is 28 B). Each code fragment starts with the cache empty; consider
only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

short *a = 0x2000000; // sizeof(short) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 28 = 256 bytes is given. The size of an array element, which is of type short, is 2 = 21 B, and so there are
28/21 = 28−1 = 27 = 128 elements per line. The first access, at i=0, will miss but bring in a line with 27 elements, and so the
next 27 − 1 = 127 accesses will be to data on the line, hits. The access at i=128 will miss and the process will repeat. Therefore

the hit ratio is 127

128
.
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Problem 6: (8 pts) Appearing below is a MIPS implementation that includes hardware for interrupts
(hardware interrupts, exceptions, and traps). An exception code, exc, is collected and passed down the
pipeline. Its value indicates the type of hardware interrupt, exception, or trap that has been encountered, a
value of 0 indicates no interrupt of any kind.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

DIn

Mem
Port

Out
rtv

ALU

MD

dst
decode

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D  

dst
dst

 

msb lsb

msb

lsb

decode

exception

1���bfc0
1����2�

1���a000

lsb

msb

1���100

1���2��

msb

exc

exc

msb

exc

msb

exc

decode

exc

mop

m
o
p

mop nop

E����	
�� ��c�
 �� ���� e�� �� ���eption.

E����	
�� handler

address, e�� �� ����


��0e���2�0.

U���� �� bits and

��l�� �� 0
	� of

M���� ����c��ned

handler locations.

5��0

msb

Hardware interrupt code

(�� ����o e��� ��	��nal

devices.

PSR

priv

p
riv

priv

priv
priv

p
ri

v

p
ri

v

format

immed

=

��! "# $"$%&')" '*+',-."$ code is always 1.

P
ro

c
e
s
s
o
r 

S
ta

tu
s
 R

e
g
is

te
r

16



(a) Notice that the decode exc logic in the ID stage examines the opcode of the instruction in ID as well
as the value of ID.priv. Hint: priv is an abbreviation for privileged. Some opcode values raise exceptions
only when ID.priv is zero, others raise exceptions whether or not ID.priv is zero.

�Describe an instruction that raises an exception in ID only if ID.priv is zero.

Any privileged instruction, for example mtc0, move to co-processor zero.

�Why is it important that such an instruction raise an exception?

It is important that such instructions raise exceptions so that restrictions can be placed on user-mode code (for which ID.priv is
zero), for example, preventing user-mode code from unfettered access to I/O devices. Privileged instructions can control access to
such devices.

Common Mistake: An incorrect answer would be a load instruction that accesses a privileged address. Yes, such an
instruction would raise an exception, but it would do so in the ME stage. The ID stage is too early because the address would not
have been computed, and the hardware for looking up permissions is in the memory port.

�Describe an instruction that raises an exception in ID whether or not ID.priv is zero.

An instruction with an unrecognized opcode. This might be a nonexistent opcode. In classroom examples we use the mnemonic ant
for such instructions. An unrecognized opcode might be an opcode defined by the ISA but not implemented in the hardware. Many
ISAs allow implementations to not implement certain instructions with the expectation that the OS would emulate these in software
when they raise exceptions. For example, SPARC has quad-precision floating point instructions which are rarely implemented. When
an instruction like faddq f0, f4, f8 tries to execute it raises an exception and the exception handler would compute the
quad-precision result, place it in registers f0-f3, and then return execution to the instruction after faddq.

Common Mistake: An incorrect answer would be a divide instruction with a zero divisor. Yes, such an instruction raises an
exception regardless of privilege level, but it does so in the FP pipeline, not in ID.

(b) The illustrated hardware squashes the faulting instruction in ME, but no hardware is shown to squash any
instructions that may be in the stages before ME nor for the stage after ME. That hardware may have been
omitted for simplicity (the same reason that control logic is omitted) or because it is not needed.

�To implement precise exceptions should the instructions in the stages before ME be squashed? �Explain
in terms of the handler and what would go wrong if instructions were not treated the right way.

Yes, they should be squashed because they come after the faulting instruction and for the exception to be precise no instruction after
the faulting instruction should complete execution (write a register value, change a memory location, etc). Suppose the instruction
in EX writes r2 and was allowed to complete, and suppose the faulting instruction uses r2 as a source. Then the handler would not
be able to re-try the faulting instruction because r2 has the wrong value.

A common mistake was to describe the stages before ME as carrying instructions before (should be after) the instruction in ME and WB
as carrying the instruction after (should be before) the one in ME. For those prone to confusion in rushed situations, just remember
that those before you on line at the sandwich shop arrived after you did.

�To implement precise exceptions should the instructions in the stage after ME be squashed? �Explain
in terms of the handler and what would go wrong if instructions were not treated the right way.

No. For the exception to be precise all instructions before the faulting instruction must execute normally. Suppose the instruction
in WB is to write r3 but was squashed before it could do so. Further, suppose the faulting instruction uses r3 as a source. If the
handler tries to re-execute the faulting instruction it won’t execute correctly because r3 was not written.
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Problem 7: (21 pts) Answer each question below.

(a) Show the encoding of the following MIPS instructions. Write the instruction name in opcode or func
field values that cannot be determined.

0x1000: beq r10, r11, TARG

0x1004: add r7, r8, r9

TARG:

0x1034: lw r12, 14(r15)

�Encoding for beq from code fragment above. �Pay attention to the branch target.

The solution appears below. The immediate field is encoded with the displacement from the delay slot to the target in units of
instructions. That is, the immediate value is: 103416−100416

4
= 3016

4
= C16.

A common mistake was to forget to divide by four.

MIPS I:

Opcode

beq = 0x4

31 26

RS

2

25 21

RT

3

20 16

Immed

0xC

15 0

�Encoding for add from code fragment above:

MIPS R:

Opcode

0

31 26

RS

8

25 21

RT

9

20 16

RD

7

15 11

SA

0

10 6

Function

add = 0x20

4 0

�Encoding for lw from code fragment above:

MIPS I:

Opcode

lw = 0x23

31 26

RS

15

25 21

RT

12

20 16

Immed

14

15 0

(b) MIPS has one kind of memory addressing for all load and store instructions, such as in lw r1, 2(r3)

where the immediate, 2, is added to the value in r3. A CISC ISA might have two versions of the load, lw
r1, (r3), which lacks an immediate (the immediate would be zero in MIPS), and lwi r1, 2(r3) for when
an immediate is needed.

�What would be the benefit for the CISC ISA of having the no-immediate version of the lw?

The instruction would be shorter, saving instruction cache space and fetch bandwidth. If the CISC implementation were not pipelined
it might be able to execute the no-immediate instruction in one less cycle than the immediate version because it would not need a
cycle to add the immediate to the base. Note that modern CISC implementations operate by translating CISC instructions into RISC
instructions, so the execution time benefit would not be realized.

�Why would MIPS and other RISC ISAs not realize the same benefit?

Because all instructions are the same size and because all integer instructions, including loads, go through the same pipeline stages.
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(c) A design team is considering removing a bypass connection to the ALU and adding a bypass connection
to the branch resolve unit. This won’t change the cost, they hope it will improve performance. “Simulation
of this design change shows that performance drops by 5%,” a sad-faced engineer announces. “We forgot to
talk to the compiler people!,” another excitedly points out, splashing hope and excitement around the room.

�What should they ask the compiler people?

They should ask the compiler people to prepare a version of the compiler that will optimize for the new bypass locations. In particular,
instructions should be scheduled to avoid needing the removed bypass path and instructions writing a register needed by a branch can
be moved closer to the branch than they would in the current implementation.

Grading Note: Many students did not see the compiler as something that could and should be modified to fit the implementation.

(d) Someone preparing the SPECcpu benchmarks for their company’s next product (currently under de-
velopment) decides to replace one of the benchmark programs with an improved version, one which better
reflects that company’s customers. Note: the emphasis below was added after the original exam, as was the

phrase “not to market.”

�Should the company use the SPECcpu benchmarks in this way to develop (but not to market) their
product?

Yes. If they are using it internally SPEC rules don’t apply. As the problem states, the substituted benchmark improves the relevance
of the results.

With the substituted benchmark program the SPEC scores are higher (better). The company decides to
release these higher SPEC results without mentioning the substitution.

�How does the design of SPECcpu make it likely that they will get caught?

Short Answer: They must disclose a config file, which competitors will surely use to reproduce their result, and they won’t stay quiet
when the results don’t match.

They must provide and make public a config file that can be used to automatically run the benchmarks. Others attempting to run
SPECcpu with their config file (and using their computer) will quickly discover that the results don’t match because those others will
be running the original SPEC benchmarks, not the substituted one.

(e) Compiler optimization is more important for a supercalar implementation than a scalar implementation.

�Optimization is more important for superscalar than scalar because:

�The important optimization is:

It’s more important because there are more situations where results can’t be bypassed. For example, dependent instructions in the
same fetch group. A stall also has a larger relative impact on performance. The important optimization is instruction scheduling,
that’s needed to avoid stalls.

Grading Note: Many students used the term dependency where hazard should be used. This is the correct usage: because there
are multiple instructions in a stage there are more data hazards.
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