
Name Formatted For 2-Sided Printing

Computer Architecture

EE 4720

Final Examination

2 May 2018, 15:00–17:00 CDT

Alias

Problem 1 (15 pts)

Problem 2 (10 pts)

Problem 3 (20 pts)

Problem 4 (16 pts)

Problem 5 (10 pts)

Problem 6 (8 pts)

Problem 7 (21 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (15 pts) Appearing below is the 2-way superscalar implementation used in class. As we usually
assume, fetch groups are aligned and stalls must keep instructions within a stage in order.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+
15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

Addr

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

D

In

D

In

(a) Show the execution of the code below on the implementation above.

Show execution. Check for dependencies!!

LINE1: # Address of the first lw insn below is 0x1000

lw r1, 0(r2)

lw r3, 0(r1)

lw r4, 4(r1)

lw r5, 8(r1)

sw r5, 12(r1)

sw r4, 16(r1)

2

(b) Show the execution of the code fragment below on the illustrated implementation.

Show execution and check for dependencies here too.

Don’t overlook the fact that the branch is taken.

Pay attention to fetch groups and the aligned fetch restriction.

Address of beq is 0x1004

beq r1, r1, SKIP1

lw r2, 0(r3)

sw r4, 0(r3)

addi r3, r3, 4

SKIP1: # Address of andi r2 is 0x2008

andi r2, r2, 0xfff

andi r6, r2, 0xff0

add r7, r2, r6

sub r8, r2, r6

3

(c) Appearing below is again our 2-way superscalar MIPS. Notice that the branch hardware shown can only
provide the target for a branch in slot 1. Add hardware for providing the branch target of a branch in slot
0. Do not add hardware for checking the branch condition. Do not add control logic.

Add hardware for a slot-0 branch.

Pay attention to cost.

Be sure the hardware computes the correct target address.

4

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+
15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

Addr

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

D

In

D

In

5

Problem 2: (10 pts) Appearing below is the execution of a bit more than two iterations of a loop on the
illustrated MIPS implementation. The execution shows the use of a two-stage FP compare unit, C1-C2, by
the c.lt.s instruction, but the unit isn’t shown.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode

dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID -------> M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF -------> ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

LOOP: # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

mul.s f1, f1, f2 IF ID -------> M1 M2 M3 M4 M5 M6 WF

6

(a) Compute the CPI of the execution of the loop above for a large number of iterations.

Compute the CPI.

Clearly show how the time for an iteration was determined, perhaps using the pipeline diagram.

(b) Reschedule the instructions to reduce the time needed to execute a large number of iterations of the loop.
Add a nop if that helps. A correct solution will still have many stalls.

Re-schedule to improve performance.

Don’t change what the loop is computing.

7

Problem 3: (20 pts) The MIPS implementation on the next page shows the two stages of the comparison
units, C1 and C2, but they are not connected to anything. The illustration also shows an FCC register that
will hold the floating-point condition code value computed by compare instructions such as c.lt.s. Connect
the comparison units and the FCC register so that they operate correctly and as described by the check items
below. Notice that logic to detect FP branch instructions and FP compare instructions has been added to
the ID stage near the bottom.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mul.s f1, f1, f2 IF ID M1 M2 M3 M4 M5 M6 WF

c.lt.s f1, f3 IF ID -------------> C1 C2 WF

bc1f LOOP IF -------------> ID ----> EX ME WB

add.s f1, f1, f4 IF ----> ID A1 A2 A3 A4 WF

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Provide connections to C1, C2, and the two FCC inputs so that the code above executes as shown.

Modify the control logic so that a compare does not arrive in WF in the same cycle as other FP instructions.
(This is despite the fact that compares do not write the FP register file.)

Modify the control logic so that the Stall ID signal is asserted for dependencies from compare to
branches, such as occurs above with the bc1f.

As always, pay attention to cost and performance and don’t break existing functionality.

8

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

30 2
2'b0

PC

+
15:0

29:0

D

dstdst

decode

dest. reg

2'd2

2'd1
2'd0

msb lsb

M5

A3

M1

Int Reg File

=

format
immed

15:0

FCC

we

D In

DOut

To branch
control logic.

C1 C2

FP branch

FP compare

9

Problem 4: (16 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on two systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor and one system has a local
predictor with an 8-outcome local history.

Branch B2 starts with a random outcome, then repeats that same outcome two more times, followed by
another random outcome followed by two more repeats of that. The random outcome is T with probability
.3 and is independent of other outcomes. The following are possible B2 outcome sequences: TTT NNN NNN

TTT TTT. Note that the number of consecutive T’s or N’s must be a multiple of 3 and so the following is not
a possible sequence of outcomes for B2: TT NN T NNNN T.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

B1: T T N T T T N N T T N T T T N N ...

B2: r r r q q q s s s ...

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the bimodal predictor on branch B2?

What is the accuracy of the local predictor on branch B1?

What is the accuracy of the local predictor on branch B2?

10

(b) Appearing below is a diagram of a local predictor, showing in detail the logic for predicting the instruction
in IF and for updating the predictor for the resolving branch. Modify the diagram so that it is a global
predictor with an 8-outcome global history.

Modify so that it is a global predictor.

Remove hardware that’s no longer needed.

Be sure to show the GHR (global history register).

PC

counter

Tar

.

Tar

+1

-1

Outcome

Pre-r ounter

IF ID

T

a
n
c
h

b
ra

n
c
h
 r

BHT

a d

a d in
we

Tar

Is Branch nch

Is Branch

Is Branch

T

c
h

PHT

a d

a d in
we

ocal History

that

Pre-R ocal History

11

Problem 5: (10 pts) The diagram below is for a 64MiB, 4-way set-associative cache with a line size of
256B, a bus width (w) of 8B, for a 64 b address space. Helpful facts: 64MiB = 64 × 220 B = 226 B and
256 = 28.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

T

Data

ddr
Data
Out

=T

Valid

ddr

Data In

l����

hit

ddr
Data
Out

T

Data

ddr
Data
Out

=T

Valid

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Memory Needed to Implement Indicate Unit!!:

Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

Address:

12

The problem on this page is not based on the cache from Part a. The code in the problem belows run on
a cache with a line size of 256B (which is 28 B). Each code fragment starts with the cache empty; consider
only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

short *a = 0x2000000; // sizeof(short) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[i];

What is the hit ratio running the code above? Show formula and briefly justify.

13

Problem 6: (8 pts) Appearing below is a MIPS implementation that includes hardware for interrupts
(hardware interrupts, exceptions, and traps). An exception code, exc, is collected and passed down the
pipeline. Its value indicates the type of hardware interrupt, exception, or trap that has been encountered, a
value of 0 indicates no interrupt of any kind.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

DIn

Mem
Port

Out
rtv

ALU

MD

dst
decode

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dst
dst

msb lsb

msb

lsb

decode

exception

16'hbfc0
16'hff2�

16'ha000

16'h100

16'h2��

m��

exc

exc

m��

exc

m��

exc

decode

exc

mop

m
o
p

mop nop

Squash

Exception code, or zero for no exception.

Exception handler

address, for example,

�0��	��2�0.

Upper 16 bits and

lower 16 bits of

MIPS' ISA-de
ned

handler locations.

5'b0

m��

Hardware interrupt code

(or zero) from external

devices.

PSR

priv

p
riv

priv

priv
priv

p
ri

v

p
ri

v

mat

immed

=

MSb of non-zero exception code is always 1.

P
ro

c
e
s
s
o
r

S
ta

tu
s
 R

e
g
is

te
r

14

(a) Notice that the decode exc logic in the ID stage examines the opcode of the instruction in ID as well
as the value of ID.priv. Hint: priv is an abbreviation for privileged. Some opcode values raise exceptions
only when ID.priv is zero, others raise exceptions whether or not ID.priv is zero.

Describe an instruction that raises an exception in ID only if ID.priv is zero.

Why is it important that such an instruction raise an exception?

Describe an instruction that raises an exception in ID whether or not ID.priv is zero.

(b) The illustrated hardware squashes the faulting instruction in ME, but no hardware is shown to squash any
instructions that may be in the stages before ME nor for the stage after ME. That hardware may have been
omitted for simplicity (the same reason that control logic is omitted) or because it is not needed.

To implement precise exceptions should the instructions in the stages before ME be squashed? Explain
in terms of the handler and what would go wrong if instructions were not treated the right way.

To implement precise exceptions should the instructions in the stage after ME be squashed? Explain
in terms of the handler and what would go wrong if instructions were not treated the right way.

15

Problem 7: (21 pts) Answer each question below.

(a) Show the encoding of the following MIPS instructions. Write the instruction name in opcode or func
field values that cannot be determined.

0x1000: beq r10, r11, TARG

0x1004: add r7, r8, r9

TARG:

0x1034: lw r12, 14(r15)

Encoding for beq from code fragment above. Pay attention to the branch target.

Encoding for add from code fragment above:

Encoding for lw from code fragment above:

(b) MIPS has one kind of memory addressing for all load and store instructions, such as in lw r1, 2(r3)

where the immediate, 2, is added to the value in r3. A CISC ISA might have two versions of the load, lw
r1, (r3), which lacks an immediate (the immediate would be zero in MIPS), and lwi r1, 2(r3) for when
an immediate is needed.

What would be the benefit for the CISC ISA of having the no-immediate version of the lw?

Why would MIPS and other RISC ISAs not realize the same benefit?

16

(c) A design team is considering removing a bypass connection to the ALU and adding a bypass connection
to the branch resolve unit. This won’t change the cost, they hope it will improve performance. “Simulation
of this design change shows that performance drops by 5%,” a sad-faced engineer announces. “We forgot to
talk to the compiler people!,” another excitedly points out, splashing hope and excitement around the room.

What should they ask the compiler people?

(d) Someone preparing the SPECcpu benchmarks for their company’s next product (currently under de-
velopment) decides to replace one of the benchmark programs with an improved version, one which better
reflects that company’s customers. Note: the emphasis below was added after the original exam, as was the

phrase “not to market.”

Should the company use the SPECcpu benchmarks in this way to develop (but not to market) their
product?

With the substituted benchmark program the SPEC scores are higher (better). The company decides to
release these higher SPEC results without mentioning the substitution.

How does the design of SPECcpu make it likely that they will get caught?

(e) Compiler optimization is more important for a supercalar implementation than a scalar implementation.

Optimization is more important for superscalar than scalar because:

The important optimization is:

17

