Name Solution

Computer Architecture

Final Examination

1 May 2017, 10:00-12:00 CDT

Problem 1 (20 pts)
Problem 2 (15 pts)
Problem 3 (20 pts)
Problem 4 (15 pts)
Problem 5 (30 pts)
Alias MY Allas Placenolder Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: (20 pts) The diagram below, based on the solution to Homework 5, shows control logic that
generates a stall signal when the value to be bypassed is too large for 12-bit bypass paths. The logic only
works when the dependency is with the rt register of the consuming instruction and when the producing
instruction is not a load. Modify the control logic so that it will generate a stall signal for a dependency to
an rs register (first example below) and dependencies with loads. Pay attention to the load sizes.

Dependency through rs register (rl in the sub).
add r1, r2, r3
sub r4, rl1, rb5

Producing instruction is a load word.
1w ri1, 2(r3)
and r4, r5, ri

Producing instruction is a load half.
1h ri1, 2(r3)
and r4, r5, ri

Producing instruction is a load byte.
1b ri1, 2(r3)
and r4, rb5, ril

Use next page for solution.

ALU
(2521 [addr Data % rsv|— I Mem
2916 faddr Data rtv : m AwfH | Port
H HAddr
—addr Din T— hJ o oldwo

wi—in _ out

| [15:0[format s
immed

il 311 abigp——
— { dst dst dst |5
T SE
1120:16 g
i
{isTyper,

Use next page for solution.

B{Modify the control logic so that it also generates the stall signal for dependencies through the rs register
that can’t use 12-bit bypasses.

MModify the stall control logic for when loads 1b, 1h, and 1w produce the value to bypass, Ertake into
account whether value can use the 12-bit bypasses and whether the instructions are too close to bypass.
MDO not break existing control logic. As always Erconsider cost and performance.

Solution appears below. The logie for stalling due to dependencies through the rs regjster appears in blue, and the logic for
dependencies related to loads appears in purple.

129:26

IF ID —] EX ME WB
NPC —L ALU

25:21 M S

+1 Addr Datap{rsv em 2

. 1 | | <

20:16 Iagdr Datal rtv | 2 ALY Port §

— T L Addr 2

Addr D n jﬂ =

> PC [D D—MD =

} rvi—in__ Out L,g

3111 s

250 15:0|format . L S

304 42 immed A f 5

msb Isb S

Addr I S I 31:11 abig X— g.

| o

Mem (Decode™ gt I X W || €

o

o

5

S

3

o]

s

3

5

<

dst dst
Port Data . N Desi Ib Ib %x
Out Iwh lwh

— —
-
. / =
rt 20:16 h:@ E J X 3
/' %]
—1
rs 25:21 =
Unbypassable from ME: M
val too big (abig) —)
or val wouldn't be L
=1b avail in time (loads).
=1h g
Stall due to
=l Stall due to dependency |dependency
from dest of insn in EX frqm de;t
to rs reg of insn in ID . of insn in ME
to rs reg
ofinsninID .
—| is Type R }

—

w

ID — EX ME

=
©

e

-
=
=
%]

rt 20:16

NPC —L ALU
25:21 M <
+1 Addr Datap+{rsv em 2
.] | | <
2016 Iagdr Datal rtv | o ALY Port §
— N U Addr 2
Addr Dn jﬂ =
o PC | D D MD =
} MVI—In__ Out L,g
. 3111 s
250 151)fonnat il %
30 immed g
msb Isb o
Addr _1wal 31:11 abig X— g
y S 7 W s
b =
em Decode dst dst %
M
Y
S
3
o
s
3
S
<

dst |+
Port pata| | x| | _Dest J Ib Ib %x
out lwh lwh

—=h
|
rs 25:21 ’;E]

Unbypassable from ME:

val too big (abig) —)
or val wouldn't be R
avail in time (loads).

Stall due to
Stall due to dependency |dependency
from dest of insn in EX from dest

to rs reg ofinsnin ID . of insn in ME
to rs reg

=lb

=lh

=lw

is Type | ofinsnin ID .
_| is Type R }

Cycle 01 2 3 4 5 6 7
lw r1, 2(r3) IF ID EX ME WB

sub r4, r5, ril IF ID ----> EX ME WB]
™\ BywB
11

aa bb cc 9

aa: Stall because lw would be in ME when sub is inTiX,_g) can’t bypass.
bb: Stall because don’t know if loaded value will fit in 12-bit bypass paths.
cc: Don’t stall, loaded value now is available from register file.

Cycle 0O 1 2 3 4 5 6 7
1b r1, 2(r3) IF ID EX ME WB

sub r4, r5, ril IF ID -> EX ME WB
aa bb

aa: Stall because 1b would be in ME when sub is in EX, so can’t bypass.
bb: Don’t stall, can bypass WB->EX and lb-loaded value can fit.

Problem 2: (15 pts) Illustrated below is a superscalar implementation taken from the solution to last year’s
final exam and the subject of this semester’s Homework 7. Show the execution of the code sequences below

on the illustrated superscalar MIPS implementation. Don’t forget to check for dependencies.

Addr
Mem
Port oa) ir°
Data .1
Out { Ir

ID

EX

ME

WB

Register File alu®
Addr Data [—{rsv°®
Addr Data [—{rtv® |— alul’F Mem
25:21 1 Port
Addr Data |—frsv™ D out md é_L,
2925 | Addr Data [—{rtv! | :[}<addr Addr
- - P rtv Din
T £ T C iA
a0 2o »
[— 1 1
150 alu alu
Immed imm?O|
15 —
>0 Immed imm? J
(Dest. reg) dst? dst? dst® |+
{Dest. reg) dstl dStl dStl
mpl

| (evem)——

%ALL_ID_I

(@) Show the execution of the code below on this implementation. Note that the address of the first instruction

is 0x1000.

B{Show execution of the following code sequence. MPay attention to ME in the diagram.

MCheck for dependencies.

The solution appears below. The 1w

stalls due to 2 GQPQ\'\GQT\QQ.

SOLUTION

Cycle

lw r1, 0(r2)
lw r3, 4(r2)
1w r4, 8(r2)
add r5, r1, r5
add r5, r3, rb
add r5, r4, rb
Cycle

0

1 2

IF ID EX
IF ID —>

0

IF ->
IF ->

T3 stalls because the ME stage can only accommodate one memory instruetion. The 1ast add

3

ME
EX
ID
ID
IF
IF

4 5 6 7 8
WB

ME WB

EX ME WB

EX ME WB

ID EX ME WB

ID -> EX ME WB

1 2 3 4 5 6 7 8

Problem 2, continued: The illustration below is the same as the one on the previous page.

ID EX ME WB

Register File alu

Addr Data |—{rsv

Addr Data —{rtv® F— Wl alul®H Mem
25:21 1 Port

Addr Data|—qrsv il o out —1 md \J___L,
PC 2926 _{ addr Data [—{rtv! | D addr Adar
A

rtv Din

— H—H
[mmed |

Addr 150 Immed imm9 I
Mem 150 Immed imm1 J I
Port ir0 —
0 Data 34_[Irl {Dest. reg) dst? dSt0 dSt0

Out Ir (Dest. reg) dst! dst! dst!

[[ﬂ:7

Addr
DIn
Addr
DIn

mpl

—W%ALL_ID_I

(b) Show the execution of the code below on the illustrated implementation when the branch is taken. Use
the classroom default assumption: fetches are aligned.

MShow execution of the following code sequence. @Check for dependencies.
MShOW all instructions that enter the pipeline, even those that are squashed in IF or later.

MPay attention to instruction addresses, such as 0x1000.

Solution appears below. Because the branen is resolved in ID the branch target is not fetehed until the branch reaches EX, in eycle
2, and therefore Two wrong-path instructions are fetehed in cyele 1. Because the memory port in IF can only feteh aligned groups
(meamng that the address of the instruction in slot 0 must be & multiple of 8) the andi instruetion is fetened and then squashed as
800N a8 1T arrives. The sb stalls because of & dependency with or. Because there is no Dypass into EX/ME.rtv the sb must stall
in ID until or reaches WB. (Thfé implementation used in Problem 1 has 4 bypass that would eliminate this sm\\.)

SOLUTION
Branch is taken. Cycle 0 1 2 3 4 5 6 7 8 9
1000: bne rl, r4 TARG IF ID EX ME WB
1004: sub rb5, r2, r7 IF ID EX ME WB
1008: xor rl10, rll, rl2 IFx
100c: 1lbu 19, 0(r5) IFx
1010: andi r8, r9, 12 IFx
Cycle 0O 1 2 3 4 5 6 7 8 9
TARG:
1014: or «rl1l1, r5, ri2 IF ID EX ME WB
1018: sb ri1l, 0(r5) IF ID -——-> EX ME WB
Cycle 0O 1 2 3 4 5 6 7 8 9

Problem 2, continued: The illustration below is the same as on the previous page.

e e e
Register File alu® f—
Addr Data [—{rsv®
Addr Data | rtv® f—
Addr Data|—{rsvt } md I
Addr Data [—{rtv! | 7
T Bc
— 2o %o
[L— o
Addr 150 Mimed 1
Immed imm’
Mem e e i)
Port 0 —
Data gi[!"1 Dest. reg dst® dst® dst®
out ir Dest. reg dst! dst! dst?
[~ Cerre) st =t = T
. STALL_ID_1

(¢) Appearing below is an execution of MIPS code on the illustrated superscalar implementation shown for
the first two iterations. Compute the CPI for a large number of iterations. If necessary extend the execution
diagram.

1w rl, 0(r2) IF ID EX ME WB
LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10

add ri1, ri1, r4d IF ID -> EX ME WB # First Iteration
1w ri, 0(r2) IF ID -> EX ME WB
bne r2, r3 LOOP IF -> ID EX ME WB
addi r2, r2, 4 IF -> ID EX ME WB
v IFx # Fallthrough insn.
7Y IFx # Fallthrough insn.
LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10
add ri1, rl, r4d IF ID EX ME WB # Second Iteration
1w rl, 0(r2) IF ID EX ME WB
bne r2, r3 LOOP IF ID EX ME WB
addi r2, r2, 4 IF ID EX ME WB
7?7 IFx # Fallthrough insn.
7Y IFx # Fallthrough insn.
LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10
add r1, r1, r4d IF ID EX ME WB # Third Iteration
Cycle 01 2 3 4 5 6 7 8 9 10 11 12
I 1st Itr ! 2nd Itr! 3rd Itr!
! 4 cyc ' 3 cyc ! 3 cyc !

MCPI for a large number of iterations.

To determine the number of eycles in an iteration we need 1o Nind & repeating pattern. The state of the pipeline at the start of the
Tirst iteration, in cycle 1, is clearly different than the state at the start of the second iteration, in eyele 5. Therefore in the solution
above the start of a third iteration has been added. We can see that the third iterafion starts in cycle 8. In both cycles 5 and 8
the pipeline contains. add in IFO, addi in EX1, bne in EXO, 1w in ME1, and add in MEO. Since the states are identical we can
oxpect the third iteration to take the same time as the seeond.

The duration of iteration ¢ is the time from when the first instruction of iteration ¢ enters IF, to the time when the first instruction
of iteration ¢ 4+ 1 enters IF. That time is mgm'\gméd above for the second iteration, which has a duration of 8 — 5 =3 QyQ\QS.

Therefore the CP1is | 852 = 2 = 0.75CPI |

Problem 3: (20 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on three systems, each with a different branch
predictor. All systems use a 2'2 entry BHT. One system has a bimodal predictor, one system has a local
predictor with a 8-outcome local history, and one system has a global predictor with a 8-outcome global
history. Branch B2 consists of a repeating pattern that starts with TNTT and is either followed by three
not-taken outcomes, nnn, or four taken outcomes, tttt. (They are shown in lower case for clarity.) The nnn
sequence occurs with probability .4, and is not correlated with anything.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

{
B1: T N T T N T N T T N T N T T N

B2: T N T T n n n T N T T t t t t

MWhat is the accuracy of the bimodal predictor on branch B1?

The diagram below snows the counter values starting from an initial value of 0. A repeating pattern starts at the third group because
the counter value is the same, 2, af the beginning and end of the group. S0 based on that five-outcome group the aceuracy is .

o 1 0 1 2 1 2 1 2 3 2 3 2 3 3 2 <-- Counter
B1: T N T T N T N T T N T N T T N
X X X X X X X X X X <-- Pred. Outcome

B{Wha‘c is the accuracy of the bimodal predictor on branch B2? MAccount for the variable pattern length.

This is Dest analyzed by considering the Tour possible cases of the way the random sequence can oceur before and after the fixed
sequence (TNTT}. These are shown in the table below. For each case the number of mispredictions is computed starting at the
Tixed sequence and continuing into the second random sequence. What makes this easy (FQ\&U\/QW) i3 thal when the fixed sequence
starts the counter will be either 0 or 3. Therefore we can compute an exact pl”Q(l\QU()ﬂ ratio for each of the four cases. These are
shown under the Pred column. The Prob column is the probab'\\'\t\/ that the nixed sequence will be surrounded with the pmt\eu\ar
random outeomes. The numbers under the weight column give something like the space taken up by the particular case. These are
used to weight the prediction gecuracies. In partieular the value under Weight is the product of the value under Pred and the
value under Weight. The sums are shown at the bottom. The prediction accuracy is the WQ'\ngd value divided by the W@\gmi

4.92 __
492 — 647368 |

601 0 1 2 1 0 Pred Prob Weight Weighted
n nnTDNTT n n n i T
X X X X 3/7 4 x4 Aok 4 %7 4 % 4 %3

3 3 2 3 3 2 1
t t t t T N T T n n n
X X X 3/7 .6 *x .4 6 x 4 x 7 .6 *x .4 % 3

o1 0 1 2 3 3 3
n nn TN TT t t t t
X X X 5/8 4 x .6 4 x 6 %8 4 *x .6 x5

3 3 2 3 3 3 3 3

t t t t TNTTTtT t t t
X 7/8 .6 * .6 .6 x .6 %8 6 x .6 %7

MWha‘c is the accuracy of the local predictor on branch B2? MAccount for the variable pattern length.

short Answer: Assum'mg that it always predicts © for the outcome after TNTT, the accuracy will be

TxA4x8+8x.6x%

8
= .947368
Tx.448x%x.6
where the pf@diQt\Oﬂ QQQUV&Qy for TNTTIlIlIl, g| and for TNTTtttt, %| nave heen WQ.\gthd Dy the prob&b\\\t\j that a B2 outeome
i 7x.4 8X.6

Long Answer: Because the local history length, 8, is long enough to identify the position Within the pattern, the only outcome that
can't be predieted with 100% aceuracy is the Arst branch after the fixed sequence, TNTT. For example, consider TNTTnnn. 1t will
correctly predict the fixed-sequence outeomes, TNTT and it will correctly predict the 1ast two ns because once it sees the first of the
three ns it Will recognize that there will be two more. Or, to put it more precisely, when the local history contains tttTNTTn or
nnnTNTTn the corresponding PHT entries will hold & zero because each time either of the two local histories was encountered in the
past the B2 outcome would be n (that's the second n) and so the PHT entry would be decremented. By the same logic the third
n Would always be correctly predicted (after warmup) as would the second, third, and fourth . When predicting the frst outeome
after the nxed sequence the local history will be either TonnTNTT or ttttTNTT. We know that 60% of the time the outcome is
t. As an approximation we can assume that the PHT entry would be 2 or 3 since 60% of the time it is incremented and 40% of the
time 1t s decremented. It is possible to compute an exact probability distribution for the counter values by construeting a four-state
Markov chain and solving the balanced flow equations ap; = (1 — a)p;41 Tor 0 > ¢ < 2, where a is the probability that the
1

K3
braneh is taken, a = .6 here. Solving these yields pg = — ; and p; = (ﬁ) Po- From this we get pg = .123077 and

(r=)"-
9

the probability of a taken prediction py + p3 = .692308 and a not taken prediction is po + p1 = .307692. We can use these
numbers to compute an overall prediction accuracy

Tx A x G602 | g 6 7692308 -
Tx 4+8x%.6 ' ’

which is only sliightly lower than the estimated aceuracy.

What is the minimum local history size for which branch B1 and B2 will not interfere with each other?
Explain.

Seven outcomes. With seven outcomes the B2 local history must contain efther three consecutive £§ or two conseeutive ns, whieh
never oceur in & B1 local history. This means that B1 and B2 will never use the same PHT entries and so Won't interfere with
each other with a seven-outeome local history. Now consider six outcomes. Local history nTNTTn could be for B1 and B2, and so
they would both use the same PHT entry. For B1 the next outcome would be T, but for B2 the next outcome would be n, and so
the shared PHT entry could not predict both branehes aceurately. (Remember that there's no difference between n and N and no
difference between t and T, 50 & local history of nTNTTn is exactly the same as NTNTTN. Upper and lower case are only being used
£o show which branch outeomes belong 1o the fixed part (upper case) and which belong 1o the repeating part (lower case).

MNote that an arrow (J) points at an execution of B1. Show the value of the GHR at the time that that
execution is being predicted.

The local history will contain TTTTNnnn.

10

Problem 3, continued:

(b) Appearing below is a diagram of a bimodal predictor, showing in detail the logic for predicting the
instruction in IF and for updating the predictor for the resolving branch. Modify the diagram so that it is

a local predictor with an 8-outcome local history.

MShOW the PHT, and connections for Mprediction and Mupdate.

Solution appears below. The changes needed to predict the branch appear in blue. The BHT now stores local history, and that is
connected to & newly added PHT. The prediction comes from the 2-bit counter in the PHT rather than the BHT. Update hardware
appears in purple. Note that for update the original local history is used to index the PHT, but the updated local history is written

into the BHT.

P PC

IF

11

PC
To PC Mux.
BHT To control logic.
15:2 3
’ a [| Target
we
1':_/)/ 2 a din
' Target 2_bit I;lectlon
—~ cognter :
g Updated local e
3 history
] local history
s . msb i .
S| e \ X PHT
g 7 7./0
’ a dl—
e Y
we
a din
{1 /4
Y %
Post-resolve
I 2-b counter. Local history used
to predict resolving branch. o
)
Outcome (1=T, 0=N) o) 3
Q
2 Pre-resolve 2-b counter 2 §
7 3_ -~
Target a 3
0
PC (resolve) gg
)
Is-Branch (=1 if branch, =0 otherwise.) & s
R~
Local History %

O

Travels with instruction.

Problem 4: (15 pts) The diagram below is for a 32 MiB (22° B) four-way set-associative cache with a line
size of 32 B.

(a) Answer the following, formulee are fine as long as they consist of grade-time constants.

MFHI in the blanks in the diagram.

CPU

Data In
Addr
Tag
Addr
Data
[22'.5 I 000 [22-_5 I Out
Data Data
Addr Addr
Data Data
29:4 Out 294 Out

MComplete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Tag Index Offset

Address: ’ | | ‘
63 23 22 5 4 4 3 0

ErMemory Needed to Implement E{Indicate Unit!!:
It's the cache capacity, 32 MiB, plus 4 x 22375 (64 — 23 + 1) bits.

B{Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

The cache apove is 32 MiB and 4-way set assoclative. In 4 direct mapped cache there is just one way with four times the storage
of a way in the cache apove. To get four times the number of entries the number of index bits is increased by two, and 8o the index
bits will start at position 24 instead of 22. The other bit positions remain the same.

Tag Index Ofiset

Address: ’ | |
63 25 24 5 4 4 3 0

12

Problem 4, continued: The problem on this page is not based on the cache from Part a. The code in the
problem belows run on a cache with a line size of 1024 B (2!° B). Each code fragment starts with the cache
empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int
int
int
int

for

sum = 0;

*a = 0x2000000; // sizeof(int) ==
i;

ILIMIT = 1 << 11; // = 21

(i=0; i<ILIMIT; i++) sum += a[i];

MWhat is the hit ratio running the code above? Show formula and briefly justify.

The line size of 219 = 1024 bytes is given. The size of an array element, which is of type int, is 4 = 22 B, and 80 there are
210/22 = 210-2 — 28 — 256 clements per line. The 7rst access, at =0, Will Miss but bring in & line with 28 elements, and
50 the next 28 — 1 = 255 accesses Will be to data on the line, hits. The access at i=256 will Miss and the process Will repeat.

1 in ia 255
Thereore th [t rao s 22

13

Problem 5: (30 pts) Answer each question below.

(a) Consider a 4-way superscalar system and a scalar system with a 4-lane vector unit. Both can compute
arithmetic at a rate of 4 operations per cycle. The vector system is cheaper but the superscalar system is
more flexible.

E(Why is the vector system less costly?

The vector system only needs to Teteh and decode one instruction per cycle, unlike four for the superscalar system and so the
superscalar system uses four times as mueh decode hardware. In a 4-way supersealar processor we expect there to be foating-point
Dypass paths from each of 4 slots in WF 1o the two functional unit (A1/ML) inputs for each slot. That's a total of 4 x 4 x 2 = 32
Dypass multiplexor inputs. But in a system With & veetor unit we don't expect cross-lane bypasses. That is, there's no bypass from
the lane-2 value of 4 result in WF o, say, the lane-1 input, though we do expect 4 bypass from the lane-2 value in WF 10 the lane-2
unit input. Each lane requires 2 multiplexor inputs Tor bypass (one input to each mux), therefore the number of bypass paths is just
2x4=8

E{Show something the superscalar system can do that the vector system cannot.

MEXplain why vector system can’t execute equivalent vector code as efficiently.

ector instructions must &pp\y the same operation 1o eacn lane of its OpQT‘M\dS. A 4-way supersealar system could execute four
different operations, Tor QX&mp\Q, the set of operations Dalow.

SOLUTION

add.d f0, f2, f4
sub.d £6, 8, f10
mul.d f12, f14, f16
add.s f18, £19, £20

(b) Unlike MIPS, ARM A64 has pre-index and post-index load and store instructions. Show two code
examples, one in A64 that uses a post-index load, and one in MIPS that does the same thing (but without
a post-index load). The exact syntax of the ARM instructions is not important, use comments to clarify
instructions.

MARM code and Mequivalent MIPS code.

@ SOLUTION

@ ARM A64
ldr x1, [x2], #8 e x1

Mem[x2]; x2 =x2 + 8

MIPS
1w r1l, 0(r2) # 11l = Mem[r2]
addi r2, r2, 4 # r2 =712+ 4

(¢) What substantial additional hardware is needed to implement ARM A64 pre- and post-index loads when
starting with something like our five-stage MIPS implementation. (Think about Homework 4.) Note: The
words “substantial” and “costly” were not included in the original exam.

MCostly additional hardware for pre- and post-index loads.

Both the pre- and post-index loads need 4 second write port to the register file. The post-index load might require an additional
pipeline laten so that both the unineremented value and ineremented value can be passed from EX 10 ME, or & separate adder in the
ME stage 1o do the post-increment, or some other costly addition.

14

(d) VLIW ISAs are supposed to do for superscalar implementations what RISC ISAs did for pipelined
implementations. The diagram below shows our 2-way superscalar MIPS. Show how a 2-slot-bundle VLIW
ISA (perhaps one a lot like MIPS) could simplify hardware in this implementation related to the sharing in
ME.

ID EX ME WB

Register File alu

Addr Data |—{rsv°® I

Addr Data |— rtv® |— }> alu’H Mem
25:21 1 i Port
Addr Dataf—qrsv- il o out —1 md J_J_,
. L AV.AVS
PC 20:16 Addr Data —] rtvl | . a){r o Ta) Addr !
5 c 5 c ¢ 3¢ % rtv DIn
° ° H
<O <O
Lo L= == alu! alu!
Addr Immed imm9 })
Mem 150 Immed imm1 J I X
Port ir0 —
Y Data 34_[Irl {Dest. reg) dStO dSt0 dSt0 I
Out ir {Dest. reg) dst! dst? dst!
g1

XE?ALLJDJ

MModify the hardware above.

MExplain the bundle slot restrictions based on modified hardware.
Solution appears above. UN\QQQSSQW hardware is crogsed out with red exes and where necessary wires reconnected in green.

A 2-slot bundle VLIW ISA designed Tor implementations like the one apove in which there was one ME-stage memory port would
require that a memory (\Oﬁd or SIOYQ) instruction be placed only one slot (S\OI 0 in the solution &b()\/@). That is, & memory instruction
in slot 1 would be invalid and raise an illegal instruction exception. With that restriction the memory port D In input omy needs a
connection to slot 0, and 8o the EX-stage mux pYOV\G\ﬂg Q p&th from 8lot 1 can be removed. Similarly, other connections to or from
the memory port to slot 1 have been removed.

MEXplain why the control logic driving STALL_ID_1 would no longer be needed.

The bundle slot restrictions Torbid two memory instructions in a bundle, and so there's no need to eheck Tor it. (m fact, there can't
be g memory instruction in slot 1 even without & memory instruction in slot 0.)

() When an exception occurs (or a trap instruction is executed) the processor switches from user mode
into privileged mode (also called system mode). Explain how privileged mode affects instruction execution,
including loads, compared to user mode.

MEﬂect of privileged mode on instruction execution including Meffect on load instruction execution.

In privileged mode all instructions can be executed, but in user mode Only a subset of instructions can be executed. Similarly, in
privileged mode & 10ad or store can access any valid memory address, in user mode 10ads and stores can only accesses addresses to
which they have been granted access.

(f) It’s hard to choose a line size that makes everyone happy. Explain how a long line size might slow down
some programs in a small cache in comparison to the right line size (for those programs).

MWith a small cache large lines can slow some programs because:

Short Answer: because the S Dytes of data (S&y) that some program needs cacned won't fit in & 45 Dyte cache because the program
Only uses % of the data in a line. 1T would take an SS*Dth cache 1o hold the .S Dytes in sueh & case.

For example, consider & 64 kiB cache with & 1024 B cache. Such a cache can hold 64 lines. Consider & program that frequently
needs 10 aceess 100 bytes of data where the address of byte 4 18 20004, Tor 0 < ¢ < 100. Each line holds just one byte of the needed
data plus 1023 unneeded bytes. Now considaer a cache With 32-byta lines, but also of 64 kiB. This cache can hold 64;510 = 2048
lings. That's more than enough for the program.

MDeseribe the characteristics of code that works well with long lines.

Code that accesses data sequentially. For example, for (i=0; i<1000000; i++) sum += al[il; . Here, the access to
data is sequential.

16

