
Name

Computer Architecture

EE 4720

Final Examination

1 May 2017, 10:00–12:00 CDT

Alias

Problem 1 (20 pts)

Problem 2 (15 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (30 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: (20 pts) The diagram below, based on the solution to Homework 5, shows control logic that
generates a stall signal when the value to be bypassed is too large for 12-bit bypass paths. The logic only
works when the dependency is with the rt register of the consuming instruction and when the producing
instruction is not a load. Modify the control logic so that it will generate a stall signal for a dependency to
an rs register (first example below) and dependencies with loads. Pay attention to the load sizes.

Dependency through rs register (r1 in the sub).

add r1, r2, r3

sub r4, r1, r5

Producing instruction is a load word.

lw r1, 2(r3)

and r4, r5, r1

Producing instruction is a load half.

lh r1, 2(r3)

and r4, r5, r1

Producing instruction is a load byte.

lb r1, 2(r3)

and r4, r5, r1

Use next page for solution.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

D

dstdst

mx1

is Type R

lsb

msb

Decode

Dest

=' ='rt 20:16

ByME

rtv

ByWB

imm

ByME

rtv

ByWB

imm

00

01

10

11

2'b0

msb lsb

31:11

31:11

S
T
A

L
L

abig

=

format
immed

15:0

= lb

= lh

= lw

is Type I

Use next page for solution.

2

Modify the control logic so that it also generates the stall signal for dependencies through the rs register
that can’t use 12-bit bypasses.

Modify the stall control logic for when loads lb, lh, and lw produce the value to bypass, take into
account whether value can use the 12-bit bypasses and whether the instructions are too close to bypass.

Do not break existing control logic. As always consider cost and performance.

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

imm

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

D

dstdst

mx1

is Type R

lsb

msb

Decode

Dest

=' ='rt 20:16

ByME

rtv

ByWB

imm

ByME

rtv

ByWB

imm

00

01

10

11

2'b0

msb lsb

31:11

31:11

S
T
A

L
L

abig

=

format
immed

15:0

= lb

= lh

= lw

is Type I

3

Problem 2: (15 pts) Illustrated below is a superscalar implementation taken from the solution to last year’s
final exam and the subject of this semester’s Homework 7. Show the execution of the code sequences below
on the illustrated superscalar MIPS implementation. Don’t forget to check for dependencies.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md

dst0Dest. reg

Addr
25:21

20:16

rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

alu0

rtv

 Addr
25:21

20:16

rsv1

rtv1Addr

Data

Data

A
d
d
r

D
��

dst1

imm0

imm1

64

15:0

alu1

dst0

dst1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst0

dst1

alu1

alu0

I����

Addr

� I�

Mem

Port

isMem

addr

isMem STA���	
��

mp1

D Out

(a) Show the execution of the code below on this implementation. Note that the address of the first instruction
is 0x1000.

Show execution of the following code sequence. Pay attention to ME in the diagram.

Check for dependencies.

START: Address is 0x1000.

lw r1, 0(r2)

lw r3, 4(r2)

lw r4, 8(r2)

add r5, r1, r5

add r5, r3, r5

add r5, r4, r5

4

Problem 2, continued: The illustration below is the same as the one on the previous page.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md

dst0Dest. reg

Addr
25:21

20:16

rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

alu0

rtv

 Addr
25:21

20:16

rsv1

rtv1Addr

Data

Data

A
d
d
r

�
�

dst1

imm0

imm1

64

15:0

alu1

dst0

dst1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst0

dst1

alu1

alu0

�����

Addr

� ��

Mem

Port

isMem

addr

isMem ST��������

mp1

D Out

(b) Show the execution of the code below on the illustrated implementation when the branch is taken. Use
the classroom default assumption: fetches are aligned.

Show execution of the following code sequence. Check for dependencies.

Show all instructions that enter the pipeline, even those that are squashed in IF or later.

Pay attention to instruction addresses, such as 0x1000.

Branch is taken.

0x1000: bne r1, r4 TARG

0x1004: sub r5, r2, r7

0x1008: xor r10, r11, r12

0x100c: lbu r9, 0(r5)

0x1010: andi r8, r9, 12

TARG:

0x1014: or r11, r5, r12

0x1018: sb r11, 0(r5)

5

Problem 2, continued: The illustration below is the same as on the previous page.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md

dst0Dest. reg

Addr
25:21

20:16

rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

alu0

rtv

 Addr
25:21

20:16

rsv1

rtv1Addr

Data

Data

A
d
d
r

�
��

dst1

imm0

imm1

64

15:0

alu1

dst0

dst1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst0

dst1

alu1

alu0

��� !

Addr

" �#

Mem

Port

isMem

addr

isMem ST$%%&'(&)

mp1

D Out

(c) Appearing below is an execution of MIPS code on the illustrated superscalar implementation shown for
the first two iterations. Compute the CPI for a large number of iterations. If necessary extend the execution
diagram.

lw r1, 0(r2) IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

add r1, r1, r4 IF ID -> EX ME WB # First Iteration

lw r1, 0(r2) IF ID -> EX ME WB

bne r2, r3 LOOP IF -> ID EX ME WB

addi r2, r2, 4 IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

add r1, r1, r4 IF ID EX ME WB # Second Iteration

lw r1, 0(r2) IF ID EX ME WB

bne r2, r3 LOOP IF ID EX ME WB

addi r2, r2, 4 IF ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10

CPI for a large number of iterations.

6

Problem 3: (20 pts) Answer the following branch prediction questions.

(a) Code producing the branch patterns shown below is to run on three systems, each with a different branch
predictor. All systems use a 212 entry BHT. One system has a bimodal predictor, one system has a local
predictor with a 8-outcome local history, and one system has a global predictor with a 8-outcome global
history. Branch B2 consists of a repeating pattern that starts with TNTT and is either followed by three
not-taken outcomes, nnn, or four taken outcomes, tttt. (They are shown in lower case for clarity.) The nnn
sequence occurs with probability .4, and is not correlated with anything.

Answer each question below, the answers should be for predictors that have already warmed up. Show work
or provide brief explanations.

↓

B1: T N T T N T N T T N T N T T N

B2: T N T T n n n T N T T t t t t

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the bimodal predictor on branch B2? Account for the variable pattern length.

What is the accuracy of the local predictor on branch B2? Account for the variable pattern length.

What is the minimum local history size for which branch B1 and B2 will not interfere with each other?
Explain.

Note that an arrow (↓) points at an execution of B1. Show the value of the GHR at the time that that
execution is being predicted.

7

Problem 3, continued:

(b) Appearing below is a diagram of a bimodal predictor, showing in detail the logic for predicting the
instruction in IF and for updating the predictor for the resolving branch. Modify the diagram so that it is
a local predictor with an 8-outcome local history.

Show the PHT, and connections for prediction and update.

PC

2*+,-

counter

Prediction

1:1

2

Target

To control logic.

To PC Mux.

P

o
.
/0
1 e

s
o
lv

e

3
04
5
o
6

n
te

r.

2

Target

+1

78

Outcome (1=T, 0=N)

Pre9:e;<=>e ?9@ Bounter

T
ra

v
e
ls

 w
it

h
 i
n
s
tr

u
c
ti

o
n
.

F
ro

m
 M

E
 (o

r s
ta

g
e
 w

h
e
re

b
ra

n
c
h
 re

s
o
lv

e
d
).

a d

a d in

PC

15:2

15:2

wC

PE F:e;<=>eG

Target

H;9J:KLBh (=1 if branch, =0 otherwise.)

P
C

 (
re

s
o
lv

e
)

8

Problem 4: (15 pts) The diagram below is for a 32MiB (225 B) four-way set-associative cache with a line
size of 32B.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

Addr
Data
Out

Tag

Data

Addr
Data
Out

=Tag

Valid

MNO

Addr

QRSR TU

logic

WXS

Addr
Data
Out

Tag

Data

Addr
Data
Out

Tag

Valid

64

16 c

Complete the address bit categorization below. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Memory Needed to Implement Indicate Unit!!:

Show the bit categorization for a direct-mapped cache with the same line size and capacity as the cache
above.

Address:

9

Problem 4, continued: The problem on this page is not based on the cache from Part a. The code in the
problem belows run on a cache with a line size of 1024B (210 B). Each code fragment starts with the cache
empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

int *a = 0x2000000; // sizeof(int) == 4

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[i];

What is the hit ratio running the code above? Show formula and briefly justify.

10

Problem 5: (30 pts) Answer each question below.

(a) Consider a 4-way superscalar system and a scalar system with a 4-lane vector unit. Both can compute
arithmetic at a rate of 4 operations per cycle. The vector system is cheaper but the superscalar system is
more flexible.

Why is the vector system less costly?

Show something the superscalar system can do that the vector system cannot.

Explain why vector system can’t execute equivalent vector code as efficiently.

(b) Unlike MIPS, ARM A64 has pre-index and post-index load and store instructions. Show two code
examples, one in A64 that uses a post-index load, and one in MIPS that does the same thing (but without
a post-index load). The exact syntax of the ARM instructions is not important, use comments to clarify
instructions.

ARM code and equivalent MIPS code.

(c) What substantial additional hardware is needed to implement ARM A64 pre- and post-index loads when
starting with something like our five-stage MIPS implementation. (Think about Homework 4.) Note: The

words “substantial” and “costly” were not included in the original exam.

Costly additional hardware for pre- and post-index loads.

11

(d) VLIW ISAs are supposed to do for superscalar implementations what RISC ISAs did for pipelined
implementations. The diagram below shows our 2-way superscalar MIPS. Show how a 2-slot-bundle VLIW
ISA (perhaps one a lot like MIPS) could simplify hardware in this implementation related to the sharing in
ME.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

md

dst0Dest. reg

Addr
25:21

20:16

rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

alu0

rtv

 Addr
25:21

20:16

rsv1

rtv1Addr

Data

Data
A

d
d
r

Y
Z[

dst1

imm0

imm1

64

15:0

alu1

dst0

dst1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst0

dst1

alu1

alu0

\]]^_

Addr

` \a

Mem

Port

isMem

addr

isMem STbccdfgdi

mp1

D Out

Modify the hardware above.

Explain the bundle slot restrictions based on modified hardware.

Explain why the control logic driving STALL ID 1 would no longer be needed.

12

(e) When an exception occurs (or a trap instruction is executed) the processor switches from user mode
into privileged mode (also called system mode). Explain how privileged mode affects instruction execution,
including loads, compared to user mode.

Effect of privileged mode on instruction execution including effect on load instruction execution.

(f) It’s hard to choose a line size that makes everyone happy. Explain how a long line size might slow down
some programs in a small cache in comparison to the right line size (for those programs).

With a small cache large lines can slow some programs because:

Describe the characteristics of code that works well with long lines.

13

