
Name

Computer Architecture

EE 4720

Midterm Examination

Wednesday, 30 March 2016, 9:30–10:20 CDT

Alias

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (12 pts)

Problem 4 (28 pts)

Problem 5 (10 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4720/

Problem 1: [25 pts] Appearing below are what are supposed to be pipeline execution diagrams (PEDs) of
code fragments executing on the illustrated implementation. The PEDs are incorrect.

(a) Correct the PEDs.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Correct the PED below.

add r1, r2, r3 IF ID EX ME WB

lw r3, 0(r1) IF ID -> EX ME WB

Correct the PED below.

lw r3, 0(r1) IF ID EX ME WB

add r4, r3, r5 IF ID -> EX ME WB

sub r6, r7, r8 IF ID EX ME WB

Correct the PED below.

Cycle 0 1 2 3 4 5 6 7

beq r1, r1 TARG IF ID EX ME WB # Branch is taken.

xor r5, r6, r7 IF IDx

add r8, r9, r10 IFx

TARG:

sub r2, r3, r4 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

2

(b) Appearing below are more PEDs which are not correct for the illustrated implementation. This time
modify the implementation so that the executions are correct. Only make necessary changes.

• Delete a bypass path by showing an × at the mux input where it ends.

• Do not delete or add more hardware than is necessary.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

Modify the implementation so that the execution below is correct.

add r1, r2, r3 IF ID EX ME WB

sub r3, r1, r5 IF ID ----> EX ME WB

Modify the implementation so that the execution below is correct.

lw r1, 0(r2) IF ID EX ME WB

sw r1, 0(r3) IF ID EX ME WB

3

Problem 2: [25 pts] The implementation below is based on the solution to Homework 2 Problem 2 in
which a bypass was added for bltz instructions.

Use Next Page for Solution

IR

Addr

25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D
0

1

dstdst

msb lsb

msb

lsb

31:31

31:31

='

TAKEN

25:21

= bltz

is Load

STALL

=

format
immed

15:0

Use Next Page for Solution

(a) The implementation can only bypass values in EX to a bltz. Modify the implementation on the next

page so that values can be bypassed from both EX and ME. With these changes the two fragments below

should run without a stall and of course bypass the correct value.

Example 1

add r1, r2, r3

sub r4, r5, r6

bltz r1, TARG

Example 2.

add r1, r2, r3

sub r1, r1, r6

bltz r1, TARG

(b) A bypass from EX isn’t possible for the code fragment below, and a bypass from ME is problematic too.
On the next page add logic to generate a stall signal for these situations (load/bltz dependencies) and

connect it to the word STALL in the upper-right of the diagram. Notice that there is an is Load logic block
in ID.

lw r1, 0(r2)

bltz r1, TARG

(c) Explain why it would not be a good idea to bypass the load value to the bltz when the load is in ME.

Bypassing load from ME not a good idea because:

4

Problem 2, continued:

Modify implementation so bltz can bypass from EX and ME.

Logic to generate stall signal for bltz dependent on load.

Answer part c.

IR

Addr

25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

D
0

1

dstdst

msb lsb

msb

lsb

31:31

31:31

='

TAKEN

25:21

= bltz

is Load

STALL

=

format
immed

15:0

5

Problem 3: [12 pts] Answer each question below.

(a) Each code fragment below writes register f30 with the sum f2 + 4720.

Plan A

addi $t0, $0, 4720

mtc1 $t0, $f17

cvt.s.w $f16, $f17

add.s $f30, $f2, $f16

Plan B

lui $t0, 0x4593

ori $t0, $t0, 0x8000

mtc1 $t0, $f16

add.s $f30, $f2, $f16

What is the difference between mtc1 and cvt?

Why doesn’t Plan B need a cvt?

(b) All MIPS integer instructions have their source register numbers in the rs and, if needed, rt fields. But
the destination register number can be found in either the rt or rd fields.

How does limiting integer sources to rs and rt reduce cost and improve performance?

Why isn’t performance hurt by having the destination in either rt or rd?

6

Problem 4: [28 pts] Answer each question below.

(a) The statement below omits an important reason why customers can be kept by companies that manage
an ISA and implementation as two different things.

By separating the ISA from the implementation we can keep our customers by offering them a faster

implementation when they are ready to buy a new system.

What is the important reason that has been omitted?

(b) To use profiling to improve performance a program is compiled twice.

What is done between the first and second compilation?

Why does the program need to be compiled a second time?

Suppose that taken branches have a penalty. Show how profiling helps.

7

Problem 4, continued:

(c) Consider an instruction such as add (r1), r2, 4(r3). What about it makes it unsuitable for a RISC
ISA? Explain why it would be difficult to implement in our pipelined design.

add (r1), r2, 4(r3) unsuitable for RISC because:

It would be difficult to implement because:

(d) When we compared the un-optimized and optimized versions of the π program we found that the optimized
version had many fewer load and store instructions. Why?

The optimized π program had fewer loads and stores because:

(e) A tester preparing a run of the SPECcpu suite is responsible for compiling the benchmarks. Why does
that make SPECcpu results interesting to computer engineers?

Tester compilation makes SPECcpu interesting to computer engineers because:

8

Problem 5: [10 pts] Answer the following questions about bypass paths.

(a) Consider the two statements below about bypasses in implementations like our five-stage MIPS running

typical programs.

A: Compiler scheduling makes bypass paths unnecessary.

Explain why the statement above is wrong.

B: Bypass paths make compiler scheduling unnecessary.

Explain why the statement above is wrong.

(b) Consider the two above statements (about bypass paths) again as it applies to our MIPS implementation,
but this time running a special set of programs. We plan to design an implementation for this set of
programs. For these programs the two statements are true! Note: The original exam did not mention the

new implementation, and it had an “or both” option below.

For such programs should we eliminate bypass paths or should we eliminate compiler scheduling?

Explain.

9

