
LSU EE 4720 Homework 3 Solution Due: 28 March 2016

Problem 1: Illustrated below is our MIPS implementation with some control logic shown. Modify
the implementation so that it can execute the SPARC v8 instructions as described below. In your
solution ignore register windows, assume that SPARC uses an ordinary 32-register general-purpose
register file.

Details of the SPARC ISA (which includes later versions) can be found in
http://www.ece.lsu.edu/ee4720/doc/JPS1-R1.0.4-Common-pub.pdf. An Inkscape SVG ver-
sion of the illustration below can be found at
http://www.ece.lsu.edu/ee4720/2016/mpipei3b.svg.

Solution on next page.

1

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/doc/JPS1-R1.0.4-Common-pub.pdf
http://www.ece.lsu.edu/ee4720/2016/mpipei3b.svg


format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst

NPC

30 2

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

is Type R

is Store

is Branch

is J

is JAL

is JR

is JALR

Dest is rd.

No dest (use r0).

Dest is r31.

Dest is rt.

rt 20:16

rd 15:11

5'd0

5'd31

00

11

01

10

lsb

msb

=

2'b0

msb lsb

format
immed

IR

Addr

IF

ID

EX WBME

rs1v

rs2v

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrdv

ALU

MD

dst

NPC

30 2

PC

+
25:0

29:26

29:0

D

dstdst

is Type R

is Store

is Branch

is J

is JAL

is JR

is JALR

Dest is rd.

No dest (use r0).

Dest is r31.

Dest is rt.

rt 20:16

5'd0

5'd31

00

11

01

10

lsb

msb

=

2'b0

msb lsb

18:14

rs
1

rs
2 4:0

rd

12:0

18:0

Addr Data rdv

rd 29:25

29:25

CC

CC

CC

Branch

control

logic

Change source

register bits.

Change branch

displacement bits.

Change dest reg bits, the same

for all integer insn. (No equivalent of rt.)

Add a 3rd reg

read port

for store value.

ALU generates

condition codes.

Provide a path

for these

back to the

CC register.

2



(a) Modify the implementation for format 3 arithmetic instructions. Use add as an example. Show
changes in the bits used: to index the register file, to format the immediate, and to generate the
writeback register number, dst.

Solution appears in blue on the previous page. The bits at the input to the register file have been changed, and
notice also that the pipeline latches at the register file outputs were renamed, for example, from rsv to rs1v. Since all
SPARC integer instructions that write a value, use the rd field for that value. For that reason the dst mux input for rt
has been removed. Also note that the immediate unit uses fewer bits. (If the sethi instruction were implemented then
the number of bits might be expanded.)

(b) Modify the implementation for branch instructions. Use BPcc as an example. Be sure to make
changes for computing the branch target.

Show changes in the hardware to generate the target address. Remove the unneeded MIPS
branch comparison hardware and add a CC register.

Solution shown in purple. The branch displacement bits were changed at the input to the ID-stage adder. Also, a
CC output was added to the ALU and the value is carried through the pipeline to the ID stage where it’s used to write a
new CC register. (It goes without saying that bypass paths could be added to the branch control logic.) Also notice that
he comparison unit in ID has been removed (shown with a red ex).

(c) Modify the implementation for load and store instructions. Use LDUW and STW as examples.
Show changes in the format immediate unit, and make sure that it can handle both ADD and

loads and stores.
Changes shown in green. Only the STW instruction requires further changes. An instruction like stw r1, [r2+r3]

has three source registers, and so a third read port has been added to the register file. A path for the retrieved value,
rdv, is provided to the Mem Port Din and red ex breaks the old path (from what was rtv).

Problem 2: Section 1.3.1 of the SPARC JPS1 lists features of the ISA.

(a) Indicate which features are typical RISC features and which features are not.
The typical RISC features are those that facilitate pipelined implementations and make it easy to compile code. They

are 32-bit instructions (as opposed to variable-sized instructions), few addressing modes, and triadic register addresses (as
opposed to having arithmetic instructions read memory or forcing an arithmetic instruction to use the same register for
its first source and destination, or something like that).

(b) One feature is “Branch elimination instructions” Provide an example of how such an instruction
can be used to eliminate a branch.

The conditional moves are the branch elimination instructions. They write a register if a condition is true. For
example, movg r1, r2 (move greater than) will write r2 with the value of r1 only if the ICC register Z (zero) and N
(negative) bits are both zero (meaning the last CC instruction result was strictly greater than zero). If the condition is
not true r2 is unchanged.

See page 276 of the SPARC JPS1 for an example.
Note: other ISAs, such as ARM, achieve the same result using predication.

3


