
Name Solution

Computer Architecture

EE 4720

Midterm Examination

Friday, 20 March 2015, 9:30–10:20 CDT

Alias The Implementation Game

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (15 pts)

Problem 4 (10 pts)

Problem 5 (10 pts)

Problem 6 (15 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/


Problem 1: [25 pts] Appearing on the next page is the HW 3 Implementation, one of the solutions to
Homework 3, Problem 2, in which the bgt instruction resolves in EX. In the HW 3 Implementation there is
a 1-cycle branch penalty when bgt is taken. (The branch penalty is the number of squashed instructions.)
Suppose that based on benchmark analyses we find that bgt is mostly taken. For that we would like a New
Implementation [tm] in which there is no penalty when bgt is taken, and a 1-cycle penalty when it’s not
taken. The PEDs below show execution examples for the HW3 and New implementations.

# Cycle 0 1 2 3 4 5 6 7 HW 3 Impl, bgt taken, 1-cyc penalty

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8 IF IDx

TARG:

and r9, r10, r11 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 HW 3 Impl, bgt not taken, no penalty

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8 IF ID EX ME WB

TARG:

and r9, r10, r11

# Cycle 0 1 2 3 4 5 6 7 New Impl, bgt taken, no penalty

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8

TARG:

and r9, r10, r11 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 New Impl, bgt not taken, 1-cyc penalty.

bgt r1, r2 TARG IF ID EX ME WB

xor r3, r4, r5 IF ID EX ME WB

or r6, r7, r8 IF ID EX ME WB

TARG:

and r9, r10, r11 IF IDx

# Cycle 0 1 2 3 4 5 6 7

2



Problem 1, continued: Convert the HW 3 Implementation below into the New Implementation. Hint:

Calm down! A correct solution only requires three minor changes, one of those changes is substituting a mux

input with a constant.

� ID changes: bgt acts like it’s always taken.

� EX changes: if bgt resolves not taken, fetch insn after delay slot insn.

Solution appears below.

format
immed

IR

Addr
25:21

20:16

IF
ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+ 15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

is J

is BEQ

is BNE

is BGTZ

is BGEZ

opc 31:26

rt 20:16

=0

31:31 lsb

msb

10

01

jmp

t-br

10 jmp

00 inc

msb lsb

msb

lsb

01 t-br

is BGT

0:0

 

t-br-ex

SQ

t-br-id

16'd1

When bgt in ID assume

it is taken.

When bgt in EX take corrective

action if it is not taken.

In EX, when bgt not taken

squash target and

resume at fall-through address.

nt-br-ex

3



Problem 2: [25 pts] In the implementation below several multiplexor inputs are labeled. For each labeled
input write a program that uses it. A sample solution is provided for A.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

A

B

C

D

E

F

�Write a code fragment for mux input A. �Mux input used in cycle 3 , � for register r1 .

# SAMPLE SOLUTION -- Mux input A.

# Cycle 0 1 2 3 4 5

add r1, r2, r3 IF ID EX ME WB

sub r4, r1, r5 IF ID EX ME WB

�Write a code fragment for mux input B. �Mux input used in cycle 2 , � for register r2 .

# SOLUTION

# Cycle 0 1 2 3 4

add r1, r2, r3 IF ID EX ME WB

�Write a code fragment for mux input C. �Mux input used in cycle 4 , � for register r1 .

# SOLUTION

# Cycle 0 1 2 3 4 5 6

add r1, r2, r3 IF ID EX ME WB

sub r4, r5, r6 IF ID EX ME WB

or r7, r8, r1 IF ID EX ME WB

Note: To be correct, the r1 register must be the second source operand of the or instruction.

4



Problem 2, continued:

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

 

dstdst

 

msb lsb

msb

lsb

A

B

C

D

E

F

�Write a code fragment for mux input D. �Mux input used in cycle 3 , � for register r1 .

# SOLUTION

# Cycle 0 1 2 3 4 5

add r1, r2, r3 IF ID EX ME WB

sw r1, 0(r4) IF ID EX ME WB

�Write a code fragment for mux input E. �Mux input used in cycle 4 , � for register r1 .

# SOLUTION

# Cycle 0 1 2 3 4

lw r1, 0(r2) IF ID EX ME WB

�Write a code fragment for mux input F. �Mux input used in cycle 1 .

# SOLUTION

# Cycle 0 1 2 3 4

j FORJOY IF ID EX ME WB

5



Problem 3: [15 pts] Answer each question below.

(a) Show the encoding of the MIPS instructions below. The opcode for beq is 0x4 and the opcode for lw is
0x23. Hint: For the fields’ bit positions see the implementation diagrams in previous problems.

TARG:

lw r1, 2(r3)

beq r4, r5, TARG

�Encoding of lw r1, 2(r3):

Solution:

opc

0x23

31 26

rs

3

25 21

rt

1

20 16

immed

2

15 0

�Encoding of the beq above �with the correct immediate field value.

The solution appears below. The immediate field contains the number of instructions to skip, starting at the delay slot instruction.
To jump up to the lw we need to skip -2 instructions.

opc

0x4

31 26

rs

4

25 21

rt

5

20 16

immed

-2

15 0

(b) Many MIPS Format-R instructions, such as add and sub, have an opcode value of 0. Explain why they
don’t have their own opcode field values, such as 0x11 for add and 0x12 for sub.

�R-format instructions have opcode 0 because . . .

. . . they have enough space for an extension of the opcode field, called the func field. Assigning opcode 0 to type R instructions
leaves lots of opcodes for format-I and -J instructions.

� If R-format instructions each had their own opcodes that would be a problem because . . .

. . . there would not be enough opcodes available for format-I and -J instructions. These instructions have immediate fields, the larger
the immediate the better, and so it’s better to omit any kind of opcode extension field.

6



Problem 4: [10 pts] Answer each question below.

(a) Describe what the dead-code elimination optimization is and provide an example.

�Description of dead-code elimination.

In dead code elimination statements (or instructions) are eliminated if they write variables (or registers) that are never used.

�Example.

In the example below line L1 is eliminated because the value of x that it writes is never used, we know that because it is overwritten
by L2.

// SOLUTION EXAMPLE

L1: x = a + b; // This line is eliminated.

L2: x = c + d;

L3: my_procedure(x);

Grading Note: Many examples were much longer than they had to be, for example, showing the π program with π not actually begin
printed.

(b) For instruction scheduling optimizations is it necessary or just helpful for the the compiler to know the
implementation?

� Implementation: Necessary, important , not needed. �Circle one � and explain.

Instruction scheduling is rearranging instructions in order to avoid stalls. The amount by which to separate two true-dependent
instructions depends on the bypass paths that are available and (which was not quite covered before the test) the latency of the
functional unit. A compiler can make assumptions about which instructions have longer latency and which bypass paths are available.
If the assumptions are reasonable then scheduling based on them will be better than not scheduling at all.

7



Problem 5: [10 pts] Answer each question below.

(a) A CISC ISA might have an instruction like add (r1), r2, 8(r3), in which the source and destination
come from memory.

�Explain why such an instruction is not suitable for a RISC ISA, � refer to RISC goals in your answer.

A goal of a RISC ISA is to enable simple, low-cost pipelined implementations. The instruction above accesses memory twice, once to
fetch an operand and once to write the result. It also does arithmetic twice, once to compute the second source operand address, and
to add the two operands together. A pipelined implementation would need to adders and worse two data memory ports to execute
that instruction, which is too costly for RISC goals. Alternatively an implementation can use a single data memory twice, but such
an implementation would not be pipelined. Either way it’s not RISC.

(b) Describe a feature and goal of VLIW ISAs.

�VLIW feature:

Instructions managed in groups called bundles. Dependency info placed in template fields.

�VLIW goal:

Low-cost implementations that can execute more than one instruction per cycle.

8



Problem 6: [15 pts] Answer each question below.

(a) SPECcpu benchmark results have two levels of tuning, peak and base. In one of these tuning levels the
same optimization flags must be used for all benchmarks of the same language.

�Which tuning level is this for?

Base.

�What is the purpose for requiring the same flags?

The base tuning level is supposed to reflect the amount of tuning performed by a conscientious and skilled programmer for whom
performance is one of many things to do. In other words, the programmer also needs to add features and fix bugs, and so cannot
waste time getting an extra 0.001% performance. It is assumed that such a programmer will come up with a good set of flags and
then use that same set consistently on the different programs he or she compiles.

Note: In class we discussed what might be a better base rule: just have one optimization flag, such as -O3 or -fast.

(b) Explain how the following corruptions of SPECcpu would be (we hope) prevented.

�The suite excludes benchmarks that perform poorly on Evil Company’s products. This won’t happen be-
cause . . .

. . . Evil Company’s competitors are also members of SPEC, and they won’t sit idly while Evil Company stacks the deck against
them. Either they will veto Evil Company’s efforts, or else they will quit SPEC and make sure that their names are removed from
the list of SPEC members.

Grading Note: Many students misunderstood the question. The question is asking about the design of the SPECcpu suite, it is not
asking about a tester running the suite.

�The SPECcpu results for Evil Company’s System X are just made-up numbers. This won’t happen be-
cause . . .

. . . the SPEC results disclosure must include a config file that would allow anyone to duplicate the test. If the numbers are made up
they will quickly be caught and few will believe anything they say in the future.

9


