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Problem 1: (20 pts) The instruction sequence below performs the calculation r2+3+r5 and requires two
MIPS instructions to do so. If these two instructions were in the same fetch group in a two-way superscalar
processor then the second one would stall, this is shown in the execution below.

addi r1, r2, 3 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

An FA-ALU has two regular inputs, and a third input reserved for small quantities, here for values < 16,
and it can produce a result in the same time as an ordinary two-input ALU. An FA-ALU can be used to
execute instruction pairs like the one above without a stall, call such an execution a fused add.

Illustrated below is a 2-way superscalar implementation with an FA-ALU. Most bypass paths have been
removed to provide space for the solution to this problem. In addition to a 4-bit input for the third operand,
the FA-ALU has a control input, FA, which should be set to 1 when the third input is to be used.

Use next page for solution.
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Use next page for solution.

(a) Add datapath connections to this implementation so that the FA-ALU can be used for fused adds. Hint:
The datapath changes are not just for that new FA-ALU input.

�Add datapath so that the correct operands are delivered to the FA-ALU for fused adds.

�Non-fusable sequences must still execute correctly. (Don’t break existing functionality.)

�Make reasonable cost and clock frequency tradeoffs.

(b) Add control logic.

�Design logic to generate the FA signal for the FA-ALU and deliver it in the correct cycle.

�Consider � instruction type, �dependencies, and � operand size.

�Add control signals for the datapath added in the previous part.

�Make reasonable cost and clock frequency tradeoffs.
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Problem 1, continued: You can use logic blocks such as isADD and isADDI in your solution.
addi r1, r2, 3 # Sample fusable sequence.

add r4, r1, r5

Solution appears below. The datapath is in blue and control logic is in green, and an alternative solution appears in purple.

The datapath needs to be changed so that the immediate and rs register value from the slot 0 (addi) instruction are fed to the slot
1 FA-ALU. Connecting the immediate is straightforward. Two solutions are shown for the rs register value. In the Plan A solution
the slot 1 rs register number is switched to the slot 0 rs register number. That requires just a 5-bit mux. In the not-as-good Plan
B solution the value is moved, require an additional 32-bit mux input. Notice that the value is taken at the output of the upper ALU
mux, this way a bypassed value can be used. That’s possible in the Plan A solution is the output of the ID-stage mux is used for the
bypass control logic (which isn’t shown).

The control logic, in green, needs to check for three things: the presence of the two instructions, whether there is a dependence, and
whether the immediate will fit in four bits. The solution only works for the arrangement of instructions shown above, and that’s all
that was needed for full credit. In real life one might want this trick to work for similar sequences, for example if the dependence
were carried into the rt rather than the rs register.
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Plan A: Inexpensive solution: For fused pair replace

slot 1's rs register with slot 0's rs register. (For pairs

in which the dependence is with slot 1's rs register.)

Connection to 4 low bits of slot-1 immediate.

Plan B: Expensive Solution: Add connection

for value in EX (rather than register number

in ID as is done for Plan A).
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Problem 2: (20 pts) Show the execution of the code fragments below on the illustrated MIPS implemen-
tations. All branches are taken.

(a) Show the execution of the code below on the following implementation. The branch is taken.
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�Show execution. �Doublecheck for dependencies.

Solution appears below.

Common mistakes: squashing the delay slot instruction (the and); not noticing that the branch depends on the sub.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

add r4, r2, r3 IF ID EX ME WB

lw r6, 8(r4) IF ID EX ME WB

sub r1, r6, r5 IF ID -> EX ME WB

beq r7, r1 TARG IF -> ID ----> EX ME WB

and r8, r7, r10 IF ----> ID EX ME WB

or r11, r12, r13

xor r14, r11, r8

TARG:

sw r1, 0(r2) IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
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(b) Show the execution of the MIPS FP code below on the following implementation. Assume that there is

a bypass from WF to M1 and A1.
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shown in purple.

�Show code execution. �Doublecheck for dependencies.

Solution appears below. Common mistakes: Not realizing that the lwc1 uses WF (not WB) and therefore it must stall to avoid the
structural hazard. Another common mistake is stalling in a stage other than ID.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add.s f6, f2, f3 IF ID A1 A2 A3 A4 WF

add.s f1, f7, f8 IF ID A1 A2 A3 A4 WF

lwc1 f9, 0(r10) IF ID ----> EX ME WF

mul.s f4, f1, f9 IF ----> ID -> M1 M2 M3 M4 M5 M6 WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 n12 13 14
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(c) Show the execution of the MIPS code below on the following 2-way superscalar implementation. The
branch is taken. Fetch groups in this implementation must be 8-byte-aligned.
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�Show code execution. �Show squashed instructions with an x.

�Doublecheck for dependencies. �Account for aligned fetch groups.

Solution appears below. Note that the sll is fetched only because the fetch unit can only fetch an address that’s a multiple of 8,
but it is squashed as soon as it arrives.

START: Instruction address of add is 0x1000

# Cycle 0 1 2 3 4 5 6 7 8 9

add r4, r2, r3 IF ID EX ME WB

lw r6, 8(r4) IF ID -> EX ME WB

sub r1, r6, r5 IF -> ID -> EX ME WB

beq r7, r15 TARG IF -> ID -> EX ME WB

and r8, r7, r10 IF -> ID EX ME WB

or r11, r12, r13 IFx

xor r14, r11, r8

sll r16, r17, 8 IFx

TARG: Instruction address of sw is 0x2004

sw r1, 0(r2) IF ID -> EX ME WB

lui r15, 0x1234 IF -> ID EX ME

# Cycle 0 1 2 3 4 5 6 7 8 9 10
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Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 230 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 12-outcome local history, and one system has a global predictor with
a 12-outcome global history.

(a) Branch behavior is shown below. Branch B2 consists of a pattern in which there will be either 2, 4, or 6
T outcomes followed by exactly four N outcomes. After the fourth N the probability of exactly two Ts is 1

3
and the probability of exactly four Ts is 1

3 .

Answer each question below, the answers should be for predictors that have already warmed up.

B1: N T T N N N N T T N N N ...

B2: T{2,4,6} N N N N T{2,4,6} N N N N ...

B3: T T T T T T T T T T T T ...

�What is the accuracy of the bimodal predictor on branch B1?

The accuracy is 3
6 . The work to compute this result is shown below, in which the counter was assumed to start at 3. (Any assumed

start value is correct.) The prediction accuracy is based on the second pattern repetition because the counter value at the start of
the pattern and the end of that pattern is the same, 0. (In contrast, the counter value at the start of the first repetition is 3 and at
the end it is 0, so we can’t use the first six outcomes of B1 to compute an accuracy, though by coincidence it would be correct.)

# SOLUTION Work

3 2 3 3 2 1 0 0 1 2 1 0 0 <- Counter values.

B1: N T T N N N N T T N N N ...

x x x x x x <- Mispred location.

--------------------------- <- Repeating pattern.

�What is the accuracy of the bimodal predictor on branch B2? �Explain.

To answer this question consider each number of Ts separately. First, TTNNNN. When this pattern starts the counter will be zero
(because every repetition ends with four Ns). So the two Ts will be mispredicted, bringing the counter to 2, and the first N will be

mispredicted. The number of correct predictions is 6− 3 = 3 and the accuracy is 1
2 . Next consider TTTTNNNN. Here the first two

Ts will be mispredicted as will the first two Ns. The number of correct predictions is 8− 4 = 4 and the accuracy is also 1
2 . Finally,

in TTTTTTNNNN the first two Ts and Ns will be mispredicted. The number of correct predictions is 10 − 4 = 6 and the accuracy
is .6.

For an overall prediction accuracy we need to combine these numbers. Since they are all equally likely we will consider one pattern of

each length, 6, 8, and 10 together as a group. The correct prediction ratio is 3+4+6
6+8+10 = 13

24 = .541667 . If we wanted to take a
weighted average of the prediction accuracies we would have to weight by both the probability of occurrence and the length. In other
words if we computed 1

3
3
6 +

1
3
4
8 +

1
3

6
10 = 8

15 we would have given the 6
10 accuracy too low a weight. Yes, it happens one third the

time, but its length, 10 outcomes, is longer than the other two so it has a larger overall impact on execution time.

�What is the minimum local history size needed to predict B1 with 100% accuracy?

Four outcomes are sufficient. With three outcomes a local history of NNN could appear before an N or a T.

�What is the accuracy of the local predictor on branch B2, after warmup. �Explain.

Because there is randomness the local predictor won’t be right 100% of the time. Notice that we always have four consecutive N’s
followed by two T’s. That means if the most-recent four outcomes in the local history are N then a T is certainly the next outcome
(and so the corresponding PHT entry will have warmed up to 3). Similarly. if the most recent PHT outcomes are a T followed by
one, two, or three Ns the next outcome is certainly an N. The table below shows some possible local history values, the next outcome,
and how often that outcome will be encountered. Stars indicate either a T or N.
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Local Next Outcome

History Frequency

-------------- - ----------

**TTN N Every Time

**TTNN N Every Time

**TTNNN N Every Time

**TTNNNN T Every Time

**TTNNNNT T Every Time

**TTNNNNTT T 2/3 of the time

**TTNNNNTT N 1/3 of the time

**TTNNNNTTT T Every Time

**TTNNNNTTTT T 1/2 of the time.

**TTNNNNTTTT N 1/2 of the time.

TTNNNNTTTTTT N Every time.

First consider TTNNNN. The Ts will always be predicted correctly because at least two Ts always follow the four Ns. The first N can
be mispredicted because 2

3 of the time the run of Ts is larger than 2. First, lets assume that the N is always mispredicted. Later,
in an advanced solution, we’ll use a better misprediction probability.

The following three Ns will be correctly predicted. So for the first pattern we have 5 correct predictions and one misprediction.

Next, consider TTTTNNNN. The first four Ts will likely be predicted correctly because after the first two Ts a third T is more likely
than an N. Given that we have four Ts, the probability of a fifth one is 1

2 . Since the bias is even the 2-bit counter can predict either
direction with equal likelihood. So the first N is mispredicted half the time for this pattern, and similarly the fifth T is mispredicted
half the time for the 6 T pattern. Considering a set of all three patterns, the expected total number of mispredicts is just 2, so the

accuracy is (5+7.5+9.5)
(6+8+10) = 11

12 = .91666 .

Advanced Solution: The solution above ignores the fact that for pattern TTNNNN there is a chance that the first N is correctly
predicted. That would occur if the local predictor saw at least two consecutive TTNNNN patterns before predicting a third consecutive
TTNNNN. Here saw means that the local histories were the name for all three patterns when predicting the first N. A simple Markov
chain can be used to determine the probability of the counter value for local history *NNNNTT (the local history used when predicting
the first N). Let p0 denote the probability that the counter value is 0, p1 denote the probability that the counter value is 1, and
so on. The problem states that the T probability is 2/3 in this case. Based on this we can write a balanced flow equation:
ap0 = (1− a)p1, where a is the T probability. Solving we get p1 = a

1−a
p0. Between p1 and p2 we can write ap1 = (1− a)p2

and get p2 =
(

a
1−a

)2

p0. Skipping a few steps we get p0 = ω−1
ω4

−1 where ω = a
1−a

. Using a = 2
3 we find p0 = 1

15 and

p1 = 2
15 and so the probability of correctly predicting the first N for the T2 case is 3

15 = 1
5 . The number of correct predictions for

T2 is 5+ 1
5 or an accuracy of 13

15 = .8667. Similarly, the number for T4 is 6 + 4
5 +

1
2 or an accuracy of 73

80 = .9125 and for T6
is 8 + 4

5 + 1
2 or an accuracy of 93

100 . The overall correct prediction accuracy is
109
120 = .9083.

�What is the minimum GHR size to predict B1 with about 100% accuracy. �Explain, and state any
assumption about B2’s behavior.

Based on the answer to the minimum-local-history-size question above, the minimum local history needed to predict B1 with 100%
accuracy is four outcomes. But here we are dealing with a global history, which contains the outcomes of the most recently executed
branches, which in this case is B1, B2, and B3. In the illustration below the outcomes of B1 have been made lower case, and the
value of a six-outcome GHR is shown at time X (see the diagram) when we are about to predict B1.

Time-> X

B1: n t t n n n n t t n n n ...

B2: T{2,4,6} N N N N T{2,4,6} N N N N ...

B3: T T T T T T T T T T T T ...

----------X

tNT nNT <--- Value of 6-outcome GHR at time X.
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Notice that this six-outcome GHR includes two outcomes of B1. Since we need four outcomes of B1 to predict with 100% accuracy

we would need a GHR size of 4× 3 = 12 for the global predictor to predict B1 with 100% accuracy.

The analysis above assumes that there is always one occurrence of B2 between B1 and B3. The diagram makes that clear for the N
outcomes of B2 but it’s not clear for the T outcomes. In other words, from the diagram above one might conclude that there are 2,
4, or 6 T outcomes between B1 and B3. Since we were invited to make an assumption, lets make the easy one: that in all cases, N
and T B2 outcomes, there is exactly one occurrence of B2 between B1 and B3.
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Problem 3, continued:

In this part consider the same predictors as on the previous page, except this time the BHT has 214 entries.

Branch B1 below is perfectly biased not taken. It executes r1 times over a short time interval, followed by
a big time gap before its next bunch of r1 executions. Branch B2 behaves similarly, except that it is biased
taken and executes in bunches of length r2 executions.

0xee4720 B1: N..N r1 N..N r1
# ...

B2: T..T r2 T..T r2

(b) Choose an address for branch B2 that will result in a BHT collision with branch B1. (Branch B1 is at
address 0xee4720.)

�Address for B2 that results in a collision.

Branch B1 will collide with B3 in a BHT lookup if the bit values used to index the BHT for the two branches are the same. Since
the BHT has 214 entries and because MIPS instructions are 4-byte aligned we will use bits 15:2 of the branch address to index (to
use as a lookup address for) the BHT. The value of those bits for B1 is 0x4720 >> 2 or 0x11c8 but for simplicity think of the
bits as 0x4720. (Note that each hex digit spans four bits). For B2 to use the same entry the four least significant hex digits must

match. One such address is 0xaa4720 .

(c) Assume that branch B1 and B2 collide in the BHT. For what positive values of r1 and r2 will this collision
be most harmful? For what range of positive values of r1 and r2 will collisions be least harmful?

�Worst values of r1 and r2 for collision. �Explain.

The worst values are r1 = 1 and r2 = 1. For those values the predictor will see one occurrence of B1 followed by one of B2, then
one of B1 and so on. The 2-bit counter will not saturate at any value. In the worst case all predictions will be wrong.

�Favorable range of positive values of r1 and r2 for collision. �Explain.

Large values for r1, r2 or both. When execution switches from one branch to the other there will be two mispredictions (assuming

both r1 ≥ 2 and r2 ≥ 2). The accuracy would be r1−2+r2−2
r1+r2

, so with the sum large the accuracy will be close to 100%.

(d) A tag can be placed in the BHT to detect collisions. Which branch will this help?

�Branch that would benefit from tag: B1 or B2. �Explain.

Branch B1 . If there is a collision when predicting B1 we will predict B1 taken (because of B2’s history). A branch predictor that
does not use a tag has no way of knowing that there’s been a collision and so when predicting B1 it will jump to the target of B2
(not the target of B1). In the predictor with a tag the collision will be detected (by comparing the stored tag to the tag of the
address of the branch being predicted). Since a collision means that the target address is wrong, the predictor will ignore the two-bit
counter (which would be 3 in this example) and instead predict not taken, which has a chance of being correct. (When a collision has
been detected you wouldn’t predict taken because the target address is for some other branch sharing the entry, and so it won’t be
correct.) Predicting not taken for B2 is wrong, but that’s what we’d do with or without a tag.
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Problem 4: (20 pts) The diagram below is for a 4MiB (222 B) set-associative cache with a line size of 128
bytes. Hints about the cache are provided in the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

Addr
Data

ag

Data

Addr
Data

=ag

Addr

Data In

	
��

Addr
Data

ag

Data

Addr
Data

=ag

36

128 b

35:18

17:4

35:18

17:7 17:7

17:4

�Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:

Tag

35 18

Index

17 7

Offset

6 4 3 0

�Associativity:

The associativity is 16 . The associativity is determined based on the given cache capacity, 222 bytes, and the capacity of an

individual data store, 218 bytes. Since the cache capacity is the sum of the data store sizes, the associativity must be 222

218 =
222−18 = 16.

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 4MiB, plus 16× 218−7 (36− 18 + 1) bits.
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�Show the bit categorization for a direct mapped cache with the same capacity and line size.

In a direct-mapped there is just one data store, which here must be 222 bits, and so the low tag bit position must be 18 + 4 = 22.
The other bit positions remain the same.

Address:

Tag

35 22

Index

21 7

Offset

6 4 3 0
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Problem 4, continued: The problems on this page are not based on the cache from the previous page.
The code in the problems below run on a 4MiB (222 byte) 4-way set-associative cache with a line size of 64
bytes. Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ i ];

�What is the hit ratio running the code above? Show formula and briefly justify.

The line size of 26 = 64 bytes is given. The size of an array element, which is of type half, is 2 = 21 characters, and so there are
26/2 = 26−1 = 25 = 32 elements per line. The first access, at i=0, will miss but bring in a line with 25 elements, and so the
next 25 − 1 = 31 accesses will be to data on the line, hits. The access at i=32 will miss and the process will repeat. Therefore

the hit ratio is 31
32 .

(c) The code appearing below is the same as the code from the 2014 Final Exam and 2015 Homework 6,
except that two possibilities for Some_Struct are shown, Plan A, and Plan B. The caches too are identical
except that here the line size is 64 bytes whereas in the prior problems it was 128 bytes. The value of BSIZE
has been chosen to the largest value for which the hit ratio of the second loop will be 100% when using the
Plan B struct. Note: In the original exam norm_val was omitted from the first loop.

struct Some_Struct { // Plan A

double val; // sizeof(double) = 8

double norm_val;

double a1[14]; };

struct Some_Struct { // Plan B

double val; // sizeof(double) = 8

double a1[7];

double norm_val;

double a2[7]; };

const int BSIZE = 1 << 15;

Some_Struct *b;

for ( int i = 0; i < BSIZE; i++ ) sum += b[i].val + b[i].norm_val; // First loop.

for ( int i = 0; i < BSIZE; i++ ) b[i].norm_val = b[i].val / sum; // Second loop.

�Explain why the Plan A struct will result in better performance on the first loop than the Plan B struct.

Short Answer: With Plan A a miss to b[i].val also brings in b[i].norm val, with Plan B there would be two misses (per
iteration) and so Plan A is faster.

Detailed Answer: Notice that the first loop accesses members val and norm val. In the Plan A struct these members are close to
each other, and so the line containing val also contains norm val. Each iteration of the first loop misses on the access to val
and because they are close together hits on the access to norm val. The val member is at the beginning of the Plan B struct, but
norm val is 8 × 8 = 64B from the beginning. A miss that brings in b[i].val will not bring in b[i].norm val because
they both can’t fit on the same 64B line. Both the Plan A struct and Plan B struct are 16 × 8 = 128B. When using the Plan
A struct the first loop will encounter BSIZE misses, but when using the Plan B struct there will be 2*BSIZE misses, and so better
performance is achieved with the Plan A struct.
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� Suppose that the value of BSIZE is to be chosen based on the Plan A struct, to a maximum value for
which the second loop enjoys a 100% hit ratio. Explain why that value is the same as for Plan B.

Short Answer: Because with Plan A the least significant index bit is always zero or always one and so half the cache is used.

As explained in the previous answer, when using the Plan A struct we only need one line per iteration, whereas with the Plan B struct
we need two lines per iteration. So you’d think that with Plan B we’d need to make BSIZE half the size to avoid cache misses. But
no.

FINISH
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Problem 5: (20 pts) Answer each question below.

(a) Which kind of implementations were RISC ISAs originally designed to simplify? Explain how a RISC
ISA feature achieves this goal.

�Type of implementation RISC designed to simplify.

Pipelined implementations.

�Choose a feature and � explain how it achieves the goal.

One RISC feature is that the arguments of arithmetic instructions must be either immediates or registers, they cannot come from or
be written to memory. If source and destination arguments could come from memory then either there would need to be a memory
port before and after the EX stage, which would be expensive, or such instructions would have to pass through the pipeline multiple
times, stalling prior instructions and complicating the design.

(b) What is the difference between a trap instruction and an instruction that raises an exception? Give an
example of how each is used in a system with bug-free code.

�Difference between trap and exception.

A trap always causes an interrupt, that’s its purpose, whereas in an instruction that raised an exception something went wrong.

�Example of what trap instruction used for.

A trap instruction can be used by user code to request a service from an operating system, for example, to read data from a file. In a
typical system user code cannot itself, for example, read data from a file since it is not allowed to access those memory location that
control the disk drive. It is not allowed access so that filesystem access policies can be enforced, for example.

�Example of what instruction exception used for.

Load and store instructions raise exceptions when they attempt to accesses invalid memory addresses, which might happen in buggy
code. In bug-free code load and store instructions can still raise exceptions. This would happen for cases where the OS needs to
adjust the memory system. For example, a load instruction encountering a TLB miss will raise an exception. The OS (acting as the
exception handler) will read the page tables, update the TLB, and re-start the load.
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Problem 5, continued:

(c) Consider a 5n-stage scalar implementation and an n-way superscalar implementation, both derived from
our 5-stage design with the goal of improving performance by as much as n×. As n increases the clock fre-
quency of the 5n-stage implementation increases but the frequency of the n-way superscalar implementation
decreases. Explain why. Assume that both types of system are well designed.

�Clock increases in the 5n-stage system because . . .

. . . the critical path in each stage is shorter as n increases and so the clock frequency can be increased. (In the 5n−stage system

each stage in the 5-stage system is divided into n stages each taking 1
n
the amount of time, ideally.) Ignoring latch setup time and

assuming stages can be perfectly divided, the clock frequency would be nφ, where φ is the clock frequency of the 5-stage system.

Accounting for a latch setup time of tL, the clock frequency would be
nφ

tLφ(n−1)+1 . It is this increase in clock frequency that results
in higher performance.

�Clock decreases in the n-way system because . . .

The design is becoming larger and so physical distances increase. A stage can have n× as much hardware, one set of hardware for
each of n slots. However signals only go through one set of hardware, so there is no need for a reduction in clock frequency by a
factor of n. The problem is that physical distances are increasing, forcing paths to be longer.

(d) A company is preparing a run of the SPEC benchmarks for their new system. While trying to tweak
compiler flags to get the best performance they discover a new optimization technique and implement it in
their compiler. They re-test with that compiler and disclose the test results. When is the use of the modified
compiler allowed under SPEC rules? When isn’t that allowed under SPEC rules?

�Modified compiler allowed provided that . . .

�This is a beneficial because . . .

. . . provided that the compiler is seriously made available to the public. This is beneficial because the modified compiler generates
better code than the old one.

�Modified compiler isn’t allowed if . . .

�The modified compiler is not beneficial because . . .

. . . isn’t allowed if the compiler is not made public, or not seriously marketed as a product. (For example, if the compiler has a
product number but does not appear in any catalog or promotional material.) Ordinarily a company would be happy to market a
better compiler. If they are not doing so it might be because the compiler generates buggy code when using the new optimizations.
So it is not beneficial because the compiler, though it works on the SPEC benchmarks, would generate buggy code when compiling
anything else. That means that the performance numbers obtained on SPEC code do not reflect what a user might obtain on other
code.
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