
Name

Computer Architecture

EE 4720

Final Examination

4 May 2015, 10:00–12:00 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (20 pts) The instruction sequence below performs the calculation r2+3+r5 and requires two
MIPS instructions to do so. If these two instructions were in the same fetch group in a two-way superscalar
processor then the second one would stall, this is shown in the execution below.

addi r1, r2, 3 IF ID EX ME WB

add r4, r1, r5 IF ID -> EX ME WB

An FA-ALU has two regular inputs, and a third input reserved for small quantities, here for values < 16,
and it can produce a result in the same time as an ordinary two-input ALU. An FA-ALU can be used to
execute instruction pairs like the one above without a stall, call such an execution a fused add.

Illustrated below is a 2-way superscalar implementation with an FA-ALU. Most bypass paths have been
removed to provide space for the solution to this problem. In addition to a 4-bit input for the third operand,
the FA-ALU has a control input, FA, which should be set to 1 when the third input is to be used.

Use next page for solution.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

D
In

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

Addr

D
In

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

pc

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

FA

4

Use next page for solution.

(a) Add datapath connections to this implementation so that the FA-ALU can be used for fused adds. Hint:
The datapath changes are not just for that new FA-ALU input.

Add datapath so that the correct operands are delivered to the FA-ALU for fused adds.

Non-fusable sequences must still execute correctly. (Don’t break existing functionality.)

Make reasonable cost and clock frequency tradeoffs.

(b) Add control logic.

Design logic to generate the FA signal for the FA-ALU and deliver it in the correct cycle.

Consider instruction type, dependencies, and operand size.

Add control signals for the datapath added in the previous part.

Make reasonable cost and clock frequency tradeoffs.

2

Problem 1, continued: You can use logic blocks such as isADD and isADDI in your solution.
addi r1, r2, 3 # Sample fusable sequence.

add r4, r1, r5

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

D
In

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

Addr

D
In

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

pc

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

FA

4

3

Problem 2: (20 pts) Show the execution of the code fragments below on the illustrated MIPS implemen-
tations. All branches are taken.

(a) Show the execution of the code below on the following implementation. The branch is taken.

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D
0 1

dstdst

msb lsb

msb

lsb

Show execution. Doublecheck for dependencies.

add r4, r2, r3

lw r6, 8(r4)

sub r1, r6, r5

beq r7, r1 TARG

and r8, r7, r10

or r11, r12, r13

xor r14, r11, r8

TARG:

sw r1, 0(r2)

4

(b) Show the execution of the MIPS FP code below on the following implementation. Assume that there is

a bypass from WF to M1 and A1.

FP Reg File

fd

WF

Addr Data

D InWE

Addr

Addr

Data

fsv

ftv

15:11

20:16 M6

we

A4A2A1

M3 M4

fd

we

xw

M2

fd

we

uses FP mul

uses FP add

FP load

Stall
ID

0

1

2

fd

we

xw

fd

we

xw

fd

we

xw xw

we

fd

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem
Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dstDecode
dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

29:0

15:0

D
0 1

dstdst

decode

dest. reg

2'd2

2'd1 2'd0

msb lsb

M5

A3

M1

Show code execution. Doublecheck for dependencies.

add.s f6, f2, f3

add.s f1, f7, f8

lwc1 f9, 0(r10)

mul.s f4, f1, f9

5

(c) Show the execution of the MIPS code below on the following 2-way superscalar implementation. The
branch is taken. Fetch groups in this implementation must be 8-byte-aligned.

Immed

IF ID EX WBME

A
d
d
r

D
 I
n

+8

Mem
Port

Addr

Addr

Mem
Port

md
0

dst
0

Dest. reg

Addr
25:21

20:16

rsv
0

rtv
0

Addr

Data

Data

+

15:0

31:2

15:0

alu
0

rtv
0

rtv
1

Addr
25:21

20:16

rsv
1

rtv
1

Addr

Data

Data

A
d
d
r

D
 I
n

dst
1

imm0

imm1

64

15:0

alu
1

Addr

Mem
Port

md
1

dst
0

dst
1

Register File

ir
0

ir
1

PC

npc

2'b0

Dest. reg

Data

Out

dst
0

dst
1

alu
1

alu
0

Data

Out

Data

Out
Immed

D

In

D

In

Show code execution. Show squashed instructions with an x.

Doublecheck for dependencies. Account for aligned fetch groups.

START: Instruction address of add is 0x1000

add r4, r2, r3

lw r6, 8(r4)

sub r1, r6, r5

beq r7, r15 TARG

and r8, r7, r10

or r11, r12, r13

xor r14, r11, r8

sll r16, r17, 8

TARG: Instruction address of sw is 0x2004

sw r1, 0(r2)

lui r15, 0x1234

6

Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 230 entry BHT. One system has a bimodal predictor,
one system has a local predictor with a 12-outcome local history, and one system has a global predictor with
a 12-outcome global history.

(a) Branch behavior is shown below. Branch B2 consists of a pattern in which there will be either 2, 4, or 6
T outcomes followed by exactly four N outcomes. After the fourth N the probability of exactly two Ts is 1

3

and the probability of exactly four Ts is 1

3
.

Answer each question below, the answers should be for predictors that have already warmed up.

B1: N T T N N N N T T N N N ...

B2: T{2,4,6} N N N N T{2,4,6} N N N N ...

B3: T T T T T T T T T T T T ...

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the bimodal predictor on branch B2? Explain.

What is the minimum local history size needed to predict B1 with 100% accuracy?

What is the accuracy of the local predictor on branch B2, after warmup. Explain.

What is the minimum GHR size to predict B1 with about 100% accuracy. Explain, and state any
assumption about B2’s behavior.

7

Problem 3, continued:

In this part consider the same predictors as on the previous page, except this time the BHT has 214 entries.

Branch B1 below is perfectly biased not taken. It executes r1 times over a short time interval, followed by
a big time gap before its next bunch of r1 executions. Branch B2 behaves similarly, except that it is biased
taken and executes in bunches of length r2 executions.

0xee4720 B1: N..N r1 N..N r1

...

B2: T..T r2 T..T r2

(b) Choose an address for branch B2 that will result in a BHT collision with branch B1. (Branch B1 is at
address 0xee4720.)

Address for B2 that results in a collision.

(c) Assume that branch B1 and B2 collide in the BHT. For what positive values of r1 and r2 will this collision
be most harmful? For what range of positive values of r1 and r2 will collisions be least harmful?

Worst values of r1 and r2 for collision. Explain.

Favorable range of positive values of r1 and r2 for collision. Explain.

(d) A tag can be placed in the BHT to detect collisions. Which branch will this help?

Branch that would benefit from tag: B1 or B2. Explain.

8

Problem 4: (20 pts) The diagram below is for a 4MiB (222 B) set-associative cache with a line size of 128
bytes. Hints about the cache are provided in the diagram.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

ddr
Data
Out

Tag

Data

ddr
Data
Out

=Tag

V

CPU

ddr

Data In

l����

ddr
Data
Out

Tag

Data

ddr
Data
Out

=Tag

V

17:4

Complete the address bit categorization. Label the sections appropriately. (Index, Offset, Tag.)

Address:
0

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

9

Problem 4, continued: The problems on this page are not based on the cache from the previous page.
The code in the problems below run on a 4MiB (222 byte) 4-way set-associative cache with a line size of 64
bytes. Each code fragment starts with the cache empty; consider only accesses to the arrays.

(b) Find the hit ratio executing the code below.

int sum = 0;

half *a = 0x2000000; // sizeof(half) == 2

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[i];

What is the hit ratio running the code above? Show formula and briefly justify.

(c) The code appearing below is the same as the code from the 2014 Final Exam and 2015 Homework 6,
except that two possibilities for Some_Struct are shown, Plan A, and Plan B. The caches too are identical
except that here the line size is 64 bytes whereas in the prior problems it was 128 bytes. The value of BSIZE
has been chosen to the largest value for which the hit ratio of the second loop will be 100% when using the
Plan B struct. Note: In the original exam norm_val was omitted from the first loop.

struct Some_Struct { // Plan A

double val; // sizeof(double) = 8

double norm_val;

double a1[14]; };

struct Some_Struct { // Plan B

double val; // sizeof(double) = 8

double a1[7];

double norm_val;

double a2[7]; };

const int BSIZE = 1 << 15;

Some_Struct *b;

for (int i = 0; i < BSIZE; i++) sum += b[i].val + b[i].norm_val; // First loop.

for (int i = 0; i < BSIZE; i++) b[i].norm_val = b[i].val / sum; // Second loop.

Explain why the Plan A struct will result in better performance on the first loop than the Plan B struct.

Suppose that the value of BSIZE is to be chosen based on the Plan A struct, to a maximum value for
which the second loop enjoys a 100% hit ratio. Explain why that value is the same as for Plan B.

10

Problem 5: (20 pts) Answer each question below.

(a) Which kind of implementations were RISC ISAs originally designed to simplify? Explain how a RISC
ISA feature achieves this goal.

Type of implementation RISC designed to simplify.

Choose a feature and explain how it achieves the goal.

(b) What is the difference between a trap instruction and an instruction that raises an exception? Give an
example of how each is used in a system with bug-free code.

Difference between trap and exception.

Example of what trap instruction used for.

Example of what instruction exception used for.

11

Problem 5, continued:

(c) Consider a 5n-stage scalar implementation and an n-way superscalar implementation, both derived from
our 5-stage design with the goal of improving performance by as much as n×. As n increases the clock fre-
quency of the 5n-stage implementation increases but the frequency of the n-way superscalar implementation
decreases. Explain why. Assume that both types of system are well designed.

Clock increases in the 5n-stage system because . . .

Clock decreases in the n-way system because . . .

(d) A company is preparing a run of the SPEC benchmarks for their new system. While trying to tweak
compiler flags to get the best performance they discover a new optimization technique and implement it in
their compiler. They re-test with that compiler and disclose the test results. When is the use of the modified
compiler allowed under SPEC rules? When isn’t that allowed under SPEC rules?

Modified compiler allowed provided that . . .

This is a beneficial because . . .

Modified compiler isn’t allowed if . . .

The modified compiler is not beneficial because . . .

12

