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Problem 1: [20 pts] The code below executes on the illustrated MIPS implementation, which is the one
usually used in class.
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(a) Show the execution of the code below until the start of the third iteration.

• Check and double-check the code for dependencies.

Show execution to start of third iteration.

LOOP:

add r1, r2, r3

sw r4, 5(r1)

bne r1, r6, LOOP

lw r2, 7(r8)

(b) Compute the CPI assuming a large number of iterations. Hint: It’s important to consider up to the third

iteration.

CPI is:
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Problem 2: [15 pts] Illustrated below is our familiar five-stage MIPS implementation with a multiply unit
added. Unlike the multiplier in Homework 4, this unit has four stages.
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(a) Show the execution of the code below on the illustrated implementation.

Show execution of code.

mult r1, r2

mflo r3

mfhi r4

(b) Explain why execution of the following code would be different.

mult r1, r2

mfhi r4

mflo r3

Execution of the code above would be different because:

(c) Design the control logic needed to generate a stall signal for dependencies between a mult and a mflo,
something the execution above should have experienced. For this problem do not assume any bypass paths
for the product other than those illustrated. Note that logic to identify the mult and mflo instructions has
already been added to the ID stage.

Control logic to generate stall signal.
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Problem 3: [15 pts] In this problem the multiply unit has been designed to produce a product sooner for
special cases, such as when one of its inputs is zero. To indicate when the product will be available Y1 has
three one-bit outputs along the bottom, y1, y2, and y3. Signal y1 is 1 if the center output of Y1 will have
a completed product at the end of the cycle, y2 is 1 if the center output Y2 will have a completed product
at the end of the cycle in which the mult is in Y2, output y3 works similarly. If y1 is 1, then y2 and y3 are
also 1, if y2 is 1 then y3 is also 1. In other words, if an early product is available at the output of Y1, it will
be at the outputs of Y2 and Y3 in subsequent cycles.
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# Cycle 0 1 2 3 4 5 6 7

mult r10, r11 IF ID Y1 Y2 Y3 Y4

a: mflo r1 IF ID EX ME WB

b: mflo r2 IF ID EX ME WB

c: mflo r3 IF ID EX ME WB

# Cycle 0 1 2 3 4 5 6 7

(a) Add bypass paths so that the code executes above without a stall assuming an early product is available.

Show bypass paths for each of the mflo instructions above.

Label the bypass paths with a, b, and c, based on the instruction (above) that uses them.
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Problem 4: [9 pts] Show the encoding of each of the instructions below. Be sure to handle the branch
target correctly. Fill in as many fields as you can. Use the value “lookup” for any field who’s value can’t be
determined by inspection.

0x1000 beq r1, r2 TARG

0x1004 lui r1, 0x1234

TARG:

0x1404 sw r3, 4(r5)

Encoding for beq as used above:

Encoding for lui as used above:

Encoding for sw as used above:

The formats appearing below are for reference.

MIPS R:

Opcode

31 26

RS

25 21

RT

20 16

RD

15 11

SA

10 6

Function

4 0

MIPS I:

Opcode

31 26

RS

25 21

RT

20 16

Immed

15 0

MIPS J:

Opcode

31 26

II

25 0
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Problem 5: [11 pts] Answer each question below.

(a) MIPS and many other RISC ISAs have a special zero register, r0 in MIPS. VAX, a CISC ISA, lacks a
zero register, but VAX has an mneg (negate) instruction (dest = -source), which MIPS and other RISC
ISAs lack.

Why does MIPS’ zero register make it unnecessary to have a negate instruction?

What can VAX use in place of a zero register? (The answer is not mneg or any other instruction.)

If VAX can use its zero register replacement in the same way MIPS uses its zero register, what is the
advantage for VAX in having a negate instruction? A quantitative answer will get full credit.

(b) Why might it be possible to have a higher clock frequency in an implementation of an ISA that uses
condition code registers (such as SPARC) compared to one which allows branch instructions to compare two
registers? Consider the types of implementations covered in class so far.

Higher clock frequency possible with condition code registers because:
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Problem 6: [20 pts] Answer each question below.

(a) What is the difference between a dependency and a hazard?

Difference between dependency and hazard:

(b) How do we know that the benchmarks in SPECcpu were not unfairly chosen to favor an influential
company’s processors.

Can trust choice of SPECcpu benchmarks because:

(c) When using profiling for optimization a program needs to be compiled twice. Explain what happens in
each compilation related to profiling.

During the first compilation:

During the second compilation:

(d) Who would benefit the most if each new processor implemented a new, one-of-a-kind, ISA: computer
engineers, compiler back-end writers, software developers, computer buyers? Explain.

Group that would benefit most (circle): computer engineers, compiler back-end writers, software developers,
computer buyers.

Reason that the group would benefit the most:
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Problem 7: [10 pts] Compiler and microarchitecture experts at a computer company are preparing the
optimization flags for a SPECcpu run. They have come up with a different set of optimization settings for
each benchmark in the suite.

(a) Based on the SPEC rules it is okay to use these individualized sets for the peak tuning runs but not the
base tuning runs. Why?

Reason individualized settings are not allowed for base:

(b) The compiler writer figures out a way to have the compiler itself, given only the -O3 flag, choose the
same individualized sets as the expert did. The compiler expert makes these changes to the compiler, which
the company will start selling. It is easy to do this in a way which goes against the spirit of the SPECcpu
rules. It would require great skill to do this in a way consistent with the spirit of the SPECcpu rules.

Easy way to have -O3 pick correct set of optimizations, but against spirit (goals) of rules. Explain.

Hard way to have -O3 pick correct set of optimizations, but in spirit (goals) of rules. Explain.
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