
LSU EE 4720 Homework 6 Due: 12 April 2013

SVG and EPS versions of the superscalar processor illustration are available at

http://www.ece.lsu.edu/ee4720/2013/mpipei3ss.svg and

http://www.ece.lsu.edu/ee4720/2013/mpipei3ss.eps, respectively. Inkscape can be used to

edit the SVG version.

Problem1: The two-way superscalar implementation below has two memory ports in the ME stage,
and so it can sustain an execution of 2 IPC on code containing only load and store instructions.
Since for many types of programs loads and stores are rarely so dense and because memory ports
are costly, it is better to make a 2-way processor with just one memory port in the ME stage.

Modify the implementation below so that it has just one memory port in the ME stage. It
should still be possible to execute arbitrary MIPS programs, albeit more slowly.

Immed

IF ID EX WBME

A
d

d
r

D
 I

n

+8

Mem

Port

Addr

Data
Out

Addr

D
In

Mem
Port

Out
md

0

dst0Dest. reg

Addr
25:21

20:16
rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

D

alu0

rtv0

rtv1

Addr
25:21

20:16
rsv1

rtv1Addr

Data

Data

A
d

d
r

D
 I

n

dst1

imm0

imm1Immed

Dest. reg64

15:0

alu1

alu0

Addr

D
In

Mem
Port

Out
D

md
1

dst0

dst1
dst0

dst1

alu1

Register File

ir0

ir1

pc

npc

2`b0

1

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/2013/mpipei3ss.svg
http://www.ece.lsu.edu/ee4720/2013/mpipei3ss.eps


Problem 2: The datapath hardware for resolving branches in the 2-way superscalar MIPS imple-
mentation below is incomplete: it does not show branch target computation for the instruction in
Slot 1 (it is shown for Slot 0). (The hardware for determining branch conditions is also not shown,
but that’s not part of this problem.) The IF-stage memory port can retrieve any 4-byte aligned
address. (That is, it does not have the stricter 8-byte alignment that is assumed by default for
2-way superscalar processors presented in class.)

Immed

IF ID EX WBME

A
d

d
r

D
 I

n
+8

Mem

Port

Addr

Data
Out

Addr

D
In

Mem
Port

Out
md

0

dst0Dest. reg

Addr
25:21

20:16
rsv0

rtv0Addr

Data

Data

+

15:0

31:2

15:0

D

alu0

rtv0

rtv1

Addr
25:21

20:16
rsv1

rtv1Addr

Data

Data

A
d

d
r

D
 I

n

dst1

imm0

imm1Immed

Dest. reg64

15:0

alu1

alu0

Addr

D
In

Mem
Port

Out
D

md
1

dst0

dst1
dst0

dst1

alu1

Register File

ir0

ir1

pc

npc

2`b0

(a) Add hardware so that the correct branch target is computed for branches in either slot. The
following signals are available: br_slot_0, which is 1 if the instruction in Slot 0 (ir0) is a branch;
br_slot_1, which is 1 if the instruction in Slot 1 is a branch. Assume that there will never be a
branch in both Slot 0 and Slot 1.

Design the hardware for low cost. Hint: Adder carry-in inputs can come in handy. The goal
of this part is to generate the correct target address, the next part concerns what is done with it.

(b) Add datapath so that the branch target address can be delivered to the PC at the correct time,
whether the branch is in Slot 0 or Slot 1. (Earlier in the semester branch delay slots were given as
an example of an ISA feature that worked well for the first implementations but that would become
a burden in future ones. Welcome to the future.)

2


