
LSU EE 4720 Homework 1 Solution Due: 6 February 2013

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles. The register file bypasses data from the write ports to the read port in the same
cycle.

format

immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+4

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

=
=0
<0

E

Z

N

NPC

LOOP:

lw r2, 0(r4)

slt r1, r2, r7

bne r1, r0 LOOP

addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop

(a) Show the execution of the code above on the illustrated implementation up to and including
the first instruction of the second iteration.

• Carefully check the code for dependencies.

• Be sure to stall when necessary.

• Pay careful attention to the timing of the fetch of the branch target.

Solution appears below. Notice that there is a dependence between the slt and the bne (sometimes people forget
that branches can have dependencies too).

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r7 IF ID ----> EX ME WB

bne r1, r0 LOOP IF ----> ID ----> EX ME WB

addi r4, r4, 1 IF ----> ID EX ME WB

sw r4, 0(r6) IF IDx

jr r31 IFx

nop

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

1

http://www.ece.lsu.edu/ee4720/

(b) Compute the CPI for a large number of iterations.
Recall that we define an iteration to start when the first instruction is in IF. In the execution above the first

iteration starts in cycle 0 and the second iteration starts in cycle 10, and so an iteration takes 10 cycles. There are four
instructions in an iteration, so the CPI is 10

4
= 2.5CPI.

2

Problem 2: The code fragment below is the same as the one used in the last problem, but the
implementation is different (most would say better).

format
immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr D In

+1

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst
Decode

dest. reg

NPC

=

30 2
2'b0

PC

+
15:0

25:0

29:26

29:0

15:0

D

dstdst

msb lsb

msb

lsb

LOOP:

lw r2, 0(r4)

slt r1, r2, r7

bne r1, r0 LOOP

addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop

(a) Show the execution of the code on this new implementation.

• There will still be stalls due to dependencies, though fewer than before.

Solution appears below. Notice that fewer stalls are eliminated than one might have hoped because the load value is
available later in the pipeline and because there are no bypasses for the branch.

SOLUTION

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

slt r1, r2, r7 IF ID -> EX ME WB

bne r1, r0 LOOP IF -> ID ----> EX ME WB

addi r4, r4, 1 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

(b) Compute the CPI for a large number of iterations.
The iteration time is now 7 cycles, and so the CPI is 7

4
= 1.75CPI.

3

Problem 3: Consider once again the code fragment from the previous two problems, and the
implementation from the previous problem. In this problem consider a MIPS implementation that
executes a blt instruction, an instruction that is not part of MIPS. With such an instruction the
code fragment from the previous problems can be shortened, and one would hope that the code
would take less time to run. In this problem rather than hope we’ll figure it out.

format

immed

IR

Addr
25:21

20:16

IF ID EX WBME

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr
D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

D
In

Mem
Port

Outrtv

ALU

MD

dst dst dst
Decode

dest. reg

NPC

=

30 2
2'b0

+
15:0

25:0

29:26

29:0

15:0

D
0 1

<

(a) Add the additional datapath (non-control) hardware needed to execute blt. Hint: Just add

one unit and a few wires.

Solution appears above in green, where in the ID stage a less-than comparison unit was added above the equality
unit.

(b) Show the execution of the code on the illustrated implementation up until the second fetch of
lw.

Solution appears below. It looks like we saved two cycles by eliminating the slt and the stall it suffered.

SOLUTION

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

blt r2, r7 LOOP IF ID ----> EX ME WB

addi r4, r4, 4 IF ----> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw r2, 0(r4) IF ID EX ME WB

sw r4, 0(r6)

jr r31

nop

(c) As we discussed in class, doing a magnitude comparison in ID might stretch the critical path,
forcing a reduction in clock frequency. Suppose the clock frequency without blt is 1GHz. At

4

what clock frequency will the blt implementation, the one in this problem, be just as fast as the
implementation from the prior problem on their respective code fragments?

• Be sure to pick a sensible meaning of just as fast. Do not define just-as-fast in terms of CPI.

Most would agree that the important measure of computer performance is how long it takes to finish your program.
We have two implementations, the original bypassed MIPS, and the blt version. Lets call the code fragments used in
this assignment our programs. The first program in this assignment is for the original MIPS, the program with blt is
for the blt version of MIPS. What’s important to us is how long it takes to run these programs on their respective
implementations.

Lets assume that in a run of either program the loop iterates 1000 times. The original MIPS implementation takes 7

cycles per iteration, for a total of 7000 cycles, and that corresponds to a time of toriginal =
7000 cycles

φorig
= 7000 cycles

1GHz
=

7µs, where φorig = 1GHz is the clock frequency of the original implementation.
In the blt version of MIPS an iteration takes only 5 cycles and so execution takes 5000 cycles. Execution time is

tblt =
5000 cycles

φblt
, where φblt is the clock frequency of the blt version. For this problem we need to find a value of φblt

that will make the execution time of the blt version 7µs. That is we need to solve 5000 cycles
φblt

= 7µs, for φblt, which
is φblt = 714MHz.

This means that if the hardware needed to implement blt slows down the clock frequency, but the clock frequency
is still > 714MHz the blt implementation will be faster.

Note that one cannot just look at something like CPI, since that would ignore the fact that the two different programs
execute a different number of instructions.

(d) Explain why the code fragments in these problems might exaggerate the benefit of the blt

instruction.
The code fragment was short, could use a blt, and the blt reduced execution by two cycles rather than the one

cycle it would for other cases. If we look at other code samples we will probably find that a blt is usable less frequently
than every five instructions, in part because not every branch is based on a magnitude comparison (see the example below).

That means the actual reduction in the number of cycles will not be as great as 7 to 5. Suppose the number of clock
cycles drops from 100 trillion to 98 trillion. In that case, we can tolerate a much smaller drop in clock frequency and still
get better performance.

Grading Notes: Many answered that the benefit is exaggerated because the clock frequency would be lower. That
is the right answer to a different question. This question asked about the code fragments in these problems. The
lower clock frequency would affect any code.

LOOP:

lw r2, 0(r4)

beq r2, r7 LOOP # blt won’t help here.

addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop

5

