LSUEE 4720 Homework 1 solution Due: 6 February 2013

Problem 1: The MIPS code below executes on the illustrated implementation. The loop iterates
for many cycles. The register file bypasses data from the write ports to the read port in the same

cycle.
IF ID EX MEM WB
\:D P NP ALL
25:21
Addr Dataff rsv Mem
+4 20164 pddr Data v ALUH | Port
- Addr
< —§A9 pin 1 Data DataffMD
v In__ Out
PC (=)>1Et
format I vy
immed @ Z L+
Adar (<0O)—NF
Mem { dDecode | dst dst dst
Port \ dest. reg}
Datap {|R IR IR IR
Out
LOOP:

1w r2, 0(r4d)
slt rl, r2, r7
bne r1, rO LOOP
addi r4, r4, 4
sw r4, 0(r6)

jr r31

nop

(a) Show the execution of the code above on the illustrated implementation up to and including
the first instruction of the second iteration.

e Carefully check the code for dependencies.
e Be sure to stall when necessary.

e Pay careful attention to the timing of the fetch of the branch target.

Solution appears Delow. Notice that there is a GQPQHGQT\QQ batween the s1t and the bne (som@t'\mo,s pQOp\Q Torgat
that branches can have GQPQ[\GQI\Q\QS t()()).

LOOP: # Cycles o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1w r2, 0(rd) IF ID EX ME WB

slt rl, r2, r7 IF ID ----> EX ME WB

bne r1, rO LOOP IF ----> ID ----> EX ME WB

addi r4, r4, 1 IF --—--> ID EX ME WB

sw r4, 0(r6) IF IDx

jr r31 IFx

nop
LOOP: # Cycles 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1w r2, 0(r4d) IF ID EX ME WB

http://www.ece.lsu.edu/ee4720/

(b) Compute the CPI for a large number of iterations.

Recall that we define an iteration to start when the first instruction is in IF. In the execution above the Tirst
iteration starts in eycle 0 and the second iteration starts in eycle 10, and 8o an iteration takes 10 cycles. There are four
instructions in an iteration, so the CP1 is 14—0 =2.5CPL

Problem 2: The code fragment below is the same as the one used in the last problem, but the
implementation is different (most would say better).

by 29:26
ID EX ME WB
— NPC —L— ALU
25:21 l —
+1 Addr Dataf+{rsv Mem
T 20:16 | yqr patald vl [ALUH | Port
—— HAddr
—Addr Din H— D ol vo
p PC Hrtvjin out

20 15:0|format
301 12 immed IMMI—
msb Isb

Addr
Mem (Decode
dst dst dst |+
Port pata| | o || | dest. reg)
Out

LOOP:
1w r2, 0(r4d)
slt rl, r2, r7
bne r1, rO LOOP
addi r4, r4, 4
sw r4, 0(r6)
jr r31
nop

(a) Show the execution of the code on this new implementation.

e There will still be stalls due to dependencies, though fewer than before.

solution appears Dalow. Notice that fewer stalls are eliminated than one might have h()p@d haecause the 1oad value is
available later in the pipeline and because there are No bypasses Tor the branch.

SOLUTION
LOOP: # Cycles 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1w r2, 0(rd) IF ID EX ME WB

slt rl, r2, r7 IF ID -> EX ME WB

bne ri, r0O LOOP IF -> ID ----> EX ME WB

addi r4, r4, 1 IF ----> ID EX ME WB
LOOP: # Cycles 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1w r2, 0(rd) IF ID EX ME WB

(b) Compute the CPI for a large number of iterations.
The Iteration time 18 now 7 cyeles, and so the CP1is & = 1.75 CPL.

Problem 3: Consider once again the code fragment from the previous two problems, and the
implementation from the previous problem. In this problem consider a MIPS implementation that
executes a blt instruction, an instruction that is not part of MIPS. With such an instruction the
code fragment from the previous problems can be shortened, and one would hope that the code
would take less time to run. In this problem rather than hope we’ll figure it out.

O
ID & Ex ME WB

lNPCT ALU
2521 pdor Data |- rsv Mem
20:1 .
018) pdar Datap v | [aLul| | Port
H Addr
— Addr D In - D o Hvp
:‘} v Ein ouf o
. 15:0| Tormat
2'b0 . IMMg—
30 2 \immed /
Addr
Mem (Decode)
dst dst dst
dest. re
Port paaf | (g] \dest. reg /
Out
— — E— E—

(a) Add the additional datapath (non-control) hardware needed to execute blt. Hint: Just add
one unit and a few wires.

solution appears apove in green, where in the ID St&g‘é 9 less-than QomeY\SOY\ unit was added above the Qqua\'\ty
unit.

(b) Show the execution of the code on the illustrated implementation up until the second fetch of
lw.
Solution appears below. 1t 100ks like we saved Two eycles Dy eliminating the s1t and the stall it sutered.

SOLUTION

LOCOP: # Cycles 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1w r2, 0(r4) IF ID EX ME WB

blt r2, r7 LOOP IF ID ----> EX ME WB

addi r4, r4, 4 IF --——> ID EX ME WB

LOOP: # Cycles 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
lw r2, 0(r4d) IF ID EX ME WB

sw r4, 0(r6)
jr r31
nop

(c) As we discussed in class, doing a magnitude comparison in ID might stretch the critical path,
forcing a reduction in clock frequency. Suppose the clock frequency without blt is 1 GHz. At

4

what clock frequency will the blt implementation, the one in this problem, be just as fast as the
implementation from the prior problem on their respective code fragments?

e Be sure to pick a sensible meaning of just as fast. Do not define just-as-fast in terms of CPI.

Most would agree that the important measure of computer performance is how 1ong it takes to finish your program.
We have two implementations, the original bypassed MIPS, and the b1t version. Lets call the code fragmants used in
This assignment our programs. The Tirst program in this assignment is for the original MIPS, the program with blt is
for the b1t varsion of MIPS. What's important to us is how 1ong it 1akes to run these programs on their respective
implementarions.

Lots assume that in & run of either program the l0op iterates 1000 times. Tha original MIPS implementation takes 7
eyeles per iteration, Tor a total of 7000 cycles, and that corrasponds o & TiMe of original = 7°0£Oiiy0165 = 1000 cycles
7 p1s, Where ¢4, = 1 GHz 18 the cloek frequency of the original implementation. ’

In the b1t version of MIPS an iteration takes only 5 cycles and 80 axecution takes 5000 cyeles. Execution time is

tole = %Cides, where ¢y 18 the clock frequency of the bl version. For this problem we need to ind & value of ¢y

that will make the execution time of the bit version 7 us. That is we need 1o solve %ﬁyﬁd‘“ = 7 s, TOr @1, Which
I8 ¢p1y = 714 MHz.

This means that if the hardware needed to implement b1t slows down the elock frequency, but the elock frequency
is still > 714 MHz the b1t implementation Will be faster.

Note that one cannot just 100k at something like CP1, since that would ignore the fact that the two different programs
axecute 4 different number of instructions.

(d) Explain why the code fragments in these problems might exaggerate the benefit of the blt
instruction.

The code Tragmgnt was short, could use & blt, and the b1t reduced execution by Two QyQ\QS rather than the one
QyQ\Q it would for other cases. If we 100k af other code samp\@s Wwe will pfOb&D\y find that a blt is usable less TYQQUQ\'\U\/
than every five instructions, in p&ft Decause not every pranch is based on a magmtude Qompar'\son (SQQ the Qxamp\@ DQ\OW).

That means the actual reduction in the number of QyQ\QS Will not be as great a8 7 10 5. SUPPOSQ the number of clock
QyQ\QS GTOPS from 100 trillion To 98 trillion. In that case, we can tolerate & much smaller df()p in clock TYQqUQT\Qy and still
gat bettar pQYTOYﬂ\&ﬂQQ.

Grading Notes: Many answered that the benent is exaggerated because the clock frequency would be lower. That
is the Ngm answer to a different question. This question agked about the code TY&ngMS in these problems. The
lower cloek TYQQUQ\'\Qy would affect any code.

LOOP:

1w r2, 0(r4d)

beq r2, r7 LOOP # blt won’t help here.
addi r4, r4, 4

sw r4, 0(r6)

jr r31

nop

